Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Pathol ; 69(3): 518-537, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32194292

RESUMO

Light leaf spot, caused by the ascomycete Pyrenopeziza brassicae, is an established disease of Brassicaceae in the United Kingdom (UK), continental Europe, and Oceania (OC, including New Zealand and Australia). The disease was reported in North America (NA) for the first time in 2014 on Brassica spp. in the Willamette Valley of western Oregon, followed by detection in Brassica juncea cover crops and on Brassica rapa weeds in northwestern Washington in 2016. Preliminary DNA sequence data and field observations suggest that isolates of the pathogen present in NA might be distinct from those in the UK, continental Europe, and OC. Comparisons of isolates from these regions using genetic (multilocus sequence analysis, MAT gene sequences, and rep-PCR DNA fingerprinting), pathogenic (B. rapa inoculation studies), biological (sexual compatibility), and morphological (colony and conidial morphology) analyses demonstrated two genetically distinct evolutionary lineages. Lineage 1 comprised isolates from the UK, continental Europe, and OC, and included the P. brassicae type specimen. Lineage 2 contained the NA isolates associated with recent disease outbreaks in the Pacific Northwest region of the USA. Symptoms caused by isolates of the two lineages on B. rapa and B. juncea differed, and therefore "chlorotic leaf spot" is proposed for the disease caused by Lineage 2 isolates of P. brassicae. Isolates of the two lineages differed in genetic diversity as well as sensitivity to the fungicides carbendazim and prothioconazole.

2.
Trends Microbiol ; 16(8): 380-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18595713

RESUMO

Plant, animal and human diseases spread by microscopic airborne particles have had major economic and social impacts during history. Special air-sampling devices have been used to collect such particles since the 19th century but it has often been impossible to identify them accurately. Exciting new opportunities to combine air sampling with quantitative PCR to identify and count these particles are reviewed, using crop pathogen examples. These methods can be used to predict the risk of unexpected outbreaks of airborne diseases by identifying increases in pathogen inoculum or genetic changes in pathogen populations that render control ineffective. The predictions can provide guidance to policymakers, health professionals or the agricultural industry for the development of strategies to minimise the risk of severe pandemics.


Assuntos
Microbiologia do Ar , Fungos/isolamento & purificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Fungos/classificação , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA