Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7790): 381-385, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853068

RESUMO

Homo erectus is the founding early hominin species of Island Southeast Asia, and reached Java (Indonesia) more than 1.5 million years ago1,2. Twelve H. erectus calvaria (skull caps) and two tibiae (lower leg bones) were discovered from a bone bed located about 20 m above the Solo River at Ngandong (Central Java) between 1931 and 19333,4, and are of the youngest, most-advanced form of H. erectus5-8. Despite the importance of the Ngandong fossils, the relationship between the fossils, terrace fill and ages have been heavily debated9-14. Here, to resolve the age of the Ngandong evidence, we use Bayesian modelling of 52 radiometric age estimates to establish-to our knowledge-the first robust chronology at regional, valley and local scales. We used uranium-series dating of speleothems to constrain regional landscape evolution; luminescence, 40argon/39argon (40Ar/39Ar) and uranium-series dating to constrain the sequence of terrace evolution; and applied uranium-series and uranium series-electron-spin resonance (US-ESR) dating to non-human fossils to directly date our re-excavation of Ngandong5,15. We show that at least by 500 thousand years ago (ka) the Solo River was diverted into the Kendeng Hills, and that it formed the Solo terrace sequence between 316 and 31 ka and the Ngandong terrace between about 140 and 92 ka. Non-human fossils recovered during the re-excavation of Ngandong date to between 109 and 106 ka (uranium-series minimum)16 and 134 and 118 ka (US-ESR), with modelled ages of 117 to 108 thousand years (kyr) for the H. erectus bone bed, which accumulated during flood conditions3,17. These results negate the extreme ages that have been proposed for the site and solidify Ngandong as the last known occurrence of this long-lived species.


Assuntos
Hominidae , Animais , Evolução Biológica , Fósseis , Indonésia , Ossos da Perna , Crânio , Fatores de Tempo
2.
Nat Ecol Evol ; 3(7): 999-1000, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209288

Assuntos
Hominidae , Animais
3.
Sci Adv ; 4(12): eaau5064, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30585290

RESUMO

After European colonization, the ancestral remains of Indigenous people were often collected for scientific research or display in museum collections. For many decades, Indigenous people, including Native Americans and Aboriginal Australians, have fought for their return. However, many of these remains have no recorded provenance, making their repatriation very difficult or impossible. To determine whether DNA-based methods could resolve this important problem, we sequenced 10 nuclear genomes and 27 mitogenomes from ancient pre-European Aboriginal Australians (up to 1540 years before the present) of known provenance and compared them to 100 high-coverage contemporary Aboriginal Australian genomes, also of known provenance. We report substantial ancient population structure showing strong genetic affinities between ancient and contemporary Aboriginal Australian individuals from the same geographic location. Our findings demonstrate the feasibility of successfully identifying the origins of unprovenanced ancestral remains using genomic methods.


Assuntos
Restos Mortais , Antropologia Forense , Genética Populacional , Genoma Humano , Alelos , Austrália , DNA Mitocondrial , Bases de Dados Genéticas , Genômica/métodos , Humanos , Filogenia
5.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654910

RESUMO

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , Grupos Raciais/genética , África/etnologia , Animais , Ásia , Conjuntos de Dados como Assunto , Estônia , Europa (Continente) , Fósseis , Fluxo Gênico , Genética Populacional , Heterozigoto , História Antiga , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Dinâmica Populacional
6.
Nature ; 538(7624): 207-214, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654914

RESUMO

The population history of Aboriginal Australians remains largely uncharacterized. Here we generate high-coverage genomes for 83 Aboriginal Australians (speakers of Pama-Nyungan languages) and 25 Papuans from the New Guinea Highlands. We find that Papuan and Aboriginal Australian ancestors diversified 25-40 thousand years ago (kya), suggesting pre-Holocene population structure in the ancient continent of Sahul (Australia, New Guinea and Tasmania). However, all of the studied Aboriginal Australians descend from a single founding population that differentiated ~10-32 kya. We infer a population expansion in northeast Australia during the Holocene epoch (past 10,000 years) associated with limited gene flow from this region to the rest of Australia, consistent with the spread of the Pama-Nyungan languages. We estimate that Aboriginal Australians and Papuans diverged from Eurasians 51-72 kya, following a single out-of-Africa dispersal, and subsequently admixed with archaic populations. Finally, we report evidence of selection in Aboriginal Australians potentially associated with living in the desert.


Assuntos
Genoma Humano/genética , Genômica , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Grupos Raciais/genética , África/etnologia , Austrália , Conjuntos de Dados como Assunto , Clima Desértico , Fluxo Gênico , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Idioma , Nova Guiné , Dinâmica Populacional , Tasmânia
7.
PLoS One ; 8(3): e58811, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554931

RESUMO

Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans, potentially reflecting inferred limb use during habitual activities such as locomotion. Despite the complex nature of factors contributing to joint loads, broad observance of these patterns across joints and across a variety of taxa suggests that subchondral radiodensity can be used as a unifying form-function principle within Mammalia.


Assuntos
Articulação do Tornozelo/fisiologia , Marsupiais/fisiologia , Suporte de Carga , Análise de Variância , Animais , Articulação do Tornozelo/anatomia & histologia , Densidade Óssea , Marsupiais/anatomia & histologia , Filogenia , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA