Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Adv Healthc Mater ; 13(12): e2303699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38277695

RESUMO

Artificial cells are engineered units with cell-like functions for different purposes including acting as supportive elements for mammalian cells. Artificial cells with minimal liver-like function are made of alginate and equipped with metalloporphyrins that mimic the enzyme activity of a member of the cytochrome P450 family namely CYP1A2. The artificial cells are employed to enhance the dealkylation activity within 3D bioprinted structures composed of HepG2 cells and these artificial cells. This enhancement is monitored through the conversion of resorufin ethyl ether to resorufin. HepG2 cell aggregates are 3D bioprinted using an alginate/gelatin methacryloyl ink, resulting in the successful proliferation of the HepG2 cells. The composite ink made of an alginate/gelatin liquid phase with an increasing amount of artificial cells is characterized. The CYP1A2-like activity of artificial cells is preserved over at least 35 days, where 6 nM resorufin is produced in 8 h. Composite inks made of artificial cells and HepG2 cell aggregates in a liquid phase are used for 3D bioprinting. The HepG2 cells proliferate over 35 days, and the structure has boosted CYP1A2 activity. The integration of artificial cells and their living counterparts into larger 3D semi-synthetic tissues is a step towards exploring bottom-up synthetic biology in tissue engineering.


Assuntos
Bioimpressão , Citocromo P-450 CYP1A2 , Impressão Tridimensional , Humanos , Células Hep G2 , Bioimpressão/métodos , Citocromo P-450 CYP1A2/metabolismo , Alginatos/química , Gelatina/química , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Metaloporfirinas/química , Metaloporfirinas/farmacologia
2.
Adv Biol (Weinh) ; 7(1): e2200209, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328791

RESUMO

The role of astrocytes in brain function has received increased attention lately due to their critical role in brain development and function under physiological and pathophysiological conditions. However, the biological evaluation of soft material nanoparticles in astrocytes remains unexplored. Here, the interaction of crosslinked hybrid vesicles (HVs) and either C8-D1A astrocytes or primary astrocytes cultured in polystyrene tissue culture or floatable paper-based chips is investigated. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) (P1) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine lipids are used for the assembly of HVs with crosslinked membranes. The assemblies show no short-term toxicity towards the C8-D1A astrocytes and the primary astrocytes, and both cell types internalize the HVs when cultured in 2D cell culture. Further, it is demonstrated that both the C8-D1A astrocytes and the primary astrocytes could mature in paper-based chips with preserved calcium signaling and glial fibrillary acidic protein expression. Last, it is confirmed that both types of astrocytes could internalize the HVs when cultured in paper-based chips. These findings lay out a fundamental understanding of the interaction between soft material nanoparticles and astrocytes, even when primary astrocytes are cultured in paper-based chips offering a 3D environment.


Assuntos
Astrócitos , Polímeros , Astrócitos/metabolismo , Polímeros/metabolismo , Papel , Técnicas de Cultura de Células
3.
Biomacromolecules ; 23(3): 1052-1064, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020375

RESUMO

Bottom-up synthetic biology aims to integrate artificial moieties with living cells and tissues. Here, two types of structural scaffolds for artificial organelles were compared in terms of their ability to interact with macrophage-like murine RAW 264.7 cells. The amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) was used to assemble micelles and polymer-lipid hybrid vesicles together with 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids in the latter case. In addition, the pH-sensitive fusogenic peptide GALA was conjugated to the carriers to improve their lysosomal escape ability. All assemblies had low short-term toxicity toward macrophage-like murine RAW 264.7 cells, and the cells internalized both the micelles and hybrid vesicles within 24 h. Assemblies containing DOPE lipids or GALA in their building blocks could escape the lysosomes. However, the intracellular retention of the building blocks was only a few hours in all the cases. Taken together, the provided comparison between two types of potential scaffolds for artificial organelles lays out the fundamental understanding required to advance soft material-based assemblies as intracellular nanoreactors.


Assuntos
Micelas , Polímeros , Animais , Camundongos , Peptídeos , Polímeros/química , Células RAW 264.7
4.
Biomacromolecules ; 22(9): 3860-3872, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34420299

RESUMO

Cell culture-based intestinal models are important to evaluate nanoformulations intended for oral drug delivery. We report the use of a floating structured paper chip as a scaffold for Caco-2 cells and HT29-MTX-E12 cells that are two established cell types used in intestinal cell models. The formation of cell monolayers for both mono- and cocultures in the paper chip are confirmed and the level of formed cell-cell junctions is evaluated. Further, cocultures show first mucus formation between 6-10 days with the mucus becoming more pronounced after 19 days. Hybrid vesicles (HVs) made from phospholipids and the amphiphilic block copolymer poly(cholesteryl methacrylate)-block-poly(2-carboxyethyl acrylate) in different ratios are used as a representative soft nanoparticle to assess their mucopenetration ability in paper chip-based cell cultures. The HV assembly is characterized, and it is illustrated that these HVs cross the mucus layer and are found intracellularly within 3 h when the cells are grown in the paper chips. Taken together, the moist three-dimensional cellulose environment of structured paper chips offers an interesting cell culture-based intestinal model that can be further integrated with fluidic systems or online read-out opportunities.


Assuntos
Mucosa Intestinal , Intestinos , Células CACO-2 , Células HT29 , Humanos , Muco
5.
Small ; 16(27): e1906493, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468702

RESUMO

Polymer-lipid hybrid vesicles are an emerging type of nano-assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)-block-poly(methionine methacryloyloxyethyl ester (METMA)-random-2-carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.


Assuntos
Fosfolipídeos , Polímeros , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Células Hep G2 , Humanos , Fosfolipídeos/química , Fosfolipídeos/toxicidade , Polímeros/química , Polímeros/toxicidade , Vesículas Transportadoras/química
6.
Nanoscale ; 11(24): 11530-11541, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150038

RESUMO

Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or ß-galactosidase (NRß-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRß-Gal are illustrated. The intracellular activity of the nanoreactors in RAW 264.7 macrophages is confirmed by an enhanced reduction in viability for cells pre-incubated with NRGOx in the presence of glucose due to the generation of cytotoxic hydrogen peroxide compared to the controls. In addition, RAW 264.7 macrophages and primary human macrophages equipped with NRß-Gal are able to intracellularly convert ß-Gal-NONOate into nitric oxide. The successful use of these hybrid vesicles to equip host macrophages with additional catalytic activity diversifies the available toolbox of nanocarriers with envisioned application in cell mimicry.


Assuntos
Glucose Oxidase/química , Macrófagos/metabolismo , Nanoestruturas/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Galactosidase/química , Animais , Humanos , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA