Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 132(12): 3357-3374, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31624872

RESUMO

KEY MESSAGE: Seven novel alleles of SBEIIb and one allele of SSIIa co-segregated with the ASV phenotype and contributed to distinct starch quality traits important for food-processing applications. Sorghum is an important food crop for millions of people in Africa and Asia. Whole-genome re-sequencing of sorghum EMS mutants exhibiting an alkali spreading value (ASV) phenotype revealed candidate SNPs in Sobic.004G163700 and Sobic.010G093400. Comparative genomics identified Sobic.010G093400 as a starch synthase IIa and Sobic.004G163700 as a starch branching enzyme IIb. Segregation analyses showed that mutations in Sobic.010G093400 or Sobic.004G163700 co-segregated with the ASV phenotype. Mutants in SSIIa exhibited no change in amylose content but expressed lower final viscosity and lower starch gelatinization temperature (GT) than starches from non-mutant plants. The sbeIIb mutants exhibited significantly higher amylose levels and starch GT and lower viscosity compared to non-mutant starches and ssIIa mutants. Mutations in SBEIIb had a dosage-dependent effect on amylose content. Double mutants of sbeIIb and ssIIa resembled their sbeIIb parent in amylose content, starch thermal properties and viscosity profiles. These variants will provide opportunities to produce sorghum varieties with modified starch end-use qualities important for the beer brewing and baking industries and specialty foods for humans with diabetes.


Assuntos
Amilose/análise , Farinha/análise , Sorghum/genética , Amido/análise , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Álcalis , Alelos , Análise Mutacional de DNA , Dosagem de Genes , Mutação , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Sintase do Amido/genética , Viscosidade
2.
Mol Microbiol ; 109(3): 327-344, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802740

RESUMO

We found that mutations that increased the transcription of the mgtCBR (Mg2+ transport-related) operon conferred increased thermotolerance on this organism. The 5' leader of the mgtCBR mRNA contains two short open reading frames (ORFs), mgtM and mgtP, whose translation regulates the expression of the mgtCBR operon by a mechanism that is similar to attenuation in amino acid biosynthetic operons. We obtained two types of mutations that resulted in elevated transcription of the operon: defects in the mgtM ribosome-binding site, impairing the translation of this ORF and deletions encompassing the stop codon of mgtM that extend the translation of this ORF across a downstream Rho termination site. These mgtM mutations give further insights into the mechanism of the transcriptional control of the mgtCBR operon that we discuss in this work. We show that the increased thermotolerance requires elevated expression of the mgtC gene, but functional mgtB and mgtR, which respectively encode an Mg2+ transporter and a regulatory protein, are dispensable for this response. MgtC has been shown to have complex functions, including a requirement for virulence, flagella-independent motility and synthesis of cellulose and we now found that it has a role in the regulation of thermotolerance.


Assuntos
Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Salmonella typhimurium/genética , Deleção de Sequência , Termotolerância/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Resposta ao Choque Térmico/genética , Fases de Leitura Aberta/genética , Óperon/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sorogrupo , Virulência/genética
3.
PLoS Genet ; 5(11): e1000732, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19936065

RESUMO

Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.


Assuntos
Evolução Molecular , Variação Genética , Genoma de Planta/genética , Retroelementos/genética , Zea mays/genética , Análise de Variância , Sequência de Bases , Centrômero/genética , Cromossomos de Plantas/genética , Dosagem de Genes/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA