Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37793073

RESUMO

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37497819

RESUMO

Electronic structure calculations have the potential to predict key matter transformations for applications of strategic technological importance, from drug discovery to material science and catalysis. However, a predictive physicochemical characterization of these processes often requires accurate quantum chemical modeling of complex molecular systems with hundreds to thousands of atoms. Due to the computationally demanding nature of electronic structure calculations and the complexity of modern high-performance computing hardware, quantum chemistry software has historically failed to operate at such large molecular scales with accuracy and speed that are useful in practice. In this paper, novel algorithms and software are presented that enable extreme-scale quantum chemistry capabilities with particular emphasis on exascale calculations. This includes the development and application of the multi-Graphics Processing Unit (GPU) library LibCChem 2.0 as part of the General Atomic and Molecular Electronic Structure System package and of the standalone Extreme-scale Electronic Structure System (EXESS), designed from the ground up for scaling on thousands of GPUs to perform high-performance accurate quantum chemistry calculations at unprecedented speed and molecular scales. Among various results, we report that the EXESS implementation enables Hartree-Fock/cc-pVDZ plus RI-MP2/cc-pVDZ/cc-pVDZ-RIFIT calculations on an ionic liquid system with 623 016 electrons and 146 592 atoms in less than 45 min using 27 600 GPUs on the Summit supercomputer with a 94.6% parallel efficiency.

3.
J Phys Chem A ; 126(39): 6995-7006, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166638

RESUMO

A generalized, projection-based transformation of the method-agnostic Fock operator in various ab initio fragment-based quantum chemistry methods has been developed for the treatment of interfragment covalent bonds. This transformation freezes the relevant localized molecular orbital associated with each interfragment bond, thereby restricting the variational subspace of the fragment wave functions, in order to maintain the proper physical characteristics of the involved covalent bonds. In addition, sets of orbitals that would lead to multiple occupancy of certain orbitals are explicitly removed from the variational space. The transformation is developed for the specific case of mutually orthonormal frozen and unfrozen orbitals within each fragment. The newly developed approach is then used to study model systems with two popular ab initio fragment-based methods, and the results of these calculations are compared to those obtained by existing methodologies. Analysis is focused on both quantitative and qualitative accuracy as well as computational scalability and stability. Other methods for which the developed formalisms are appropriate are outlined, and future extensions of the methods are discussed.

4.
J Chem Phys ; 155(15): 154101, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686043

RESUMO

An alternative formulation of the non-orthogonal molecular orbital model of electronic structure theory is developed based on the expansion of the inverse molecular orbital overlap matrix. From this model, a hierarchy of ab initio fragment-based quantum chemistry methods, referred to as the nth-order expanded non-orthogonal molecular orbital methods, are developed using a minimal number of approximations, each of which is frequently employed in intermolecular interaction theory. These novel methods are compared to existing fragment-based quantum chemistry methods, and the implications of those significant differences, where they exist, between the methods developed herein and those already existing methods are examined in detail. Computational complexities and theoretical scaling are also analyzed and discussed. Future extensions for the hierarchy of methods, to account for additional intrafragment and interfragment interactions, are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA