Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 6615, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103360

RESUMO

RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.


Assuntos
Processamento de Proteína Pós-Traducional , Edição de RNA , Humanos , Fosforilação , Células HEK293 , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , RNA/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Acetilação
2.
Nat Biotechnol ; 40(5): 759-768, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980913

RESUMO

RNA base editing represents a promising alternative to genome editing. Recent approaches harness the endogenous RNA-editing enzyme adenosine deaminase acting on RNA (ADAR) to circumvent problems caused by ectopic expression of engineered editing enzymes, but suffer from sequence restriction, lack of efficiency and bystander editing. Here we present in silico-optimized CLUSTER guide RNAs that bind their target messenger RNAs in a multivalent fashion, achieve editing with high precision and efficiency and enable targeting of sequences that were not accessible using previous gRNA designs. CLUSTER gRNAs can be genetically encoded and delivered using viruses, and are active in a wide range of cell lines. In cell culture, CLUSTER gRNAs achieve on-target editing of endogenous transcripts with yields of up to 45% without bystander editing. In vivo, CLUSTER gRNAs delivered to mouse liver by hydrodynamic tail vein injection edited reporter constructs at rates of up to 10%. The CLUSTER approach opens avenues for drug development in the field of RNA base editing.


Assuntos
Edição de RNA , RNA Guia de Cinetoplastídeos , Animais , Sequência de Bases , Camundongos , RNA/metabolismo , Edição de RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nat Biotechnol ; 37(2): 133-138, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692694

RESUMO

Site-directed RNA editing might provide a safer or more effective alternative to genome editing in certain clinical scenarios. Until now, RNA editing has relied on overexpression of exogenous RNA editing enzymes or of endogenous human ADAR (adenosine deaminase acting on RNA) enzymes. Here we describe the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we call RESTORE (recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing). We observed almost no off-target editing, and natural editing homeostasis was not perturbed. We successfully applied RESTORE to a panel of standard human cell lines and human primary cells and demonstrated repair of the clinically relevant PiZZ mutation, which causes α1-antitrypsin deficiency, and editing of phosphotyrosine 701 in STAT1, the activity switch of the signaling factor. RESTORE requires only the administration of an oligonucleotide, circumvents ectopic expression of proteins, and represents an attractive approach for drug development.


Assuntos
Adenosina Desaminase/genética , Oligonucleotídeos Antissenso/genética , Edição de RNA , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Motivos de Aminoácidos , Células Cultivadas , Desenho de Fármacos , Células HeLa , Células Hep G2 , Humanos , Interferon-alfa/farmacologia , Mutação , Fases de Leitura Aberta , Fosfotirosina/química , RNA Mensageiro/metabolismo , Fator de Transcrição STAT1/genética , Transdução de Sinais , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética
4.
Genes (Basel) ; 8(1)2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28098820

RESUMO

Site-directed RNA editing is an approach to reprogram genetic information at the RNA level. We recently introduced a novel guideRNA that allows for the recruitment of human ADAR2 to manipulate genetic information. Here, we show that the current guideRNA design is already able to recruit another human deaminase, ADAR1, in both isoforms, p110 and p150. However, further optimization seems necessary as the current design is less efficient for ADAR1 isoforms. Furthermore, we describe hotspots at which the guideRNA itself is edited and show a way to circumvent this auto-editing without losing editing efficiency at the target. Both findings are important for the advancement of site-directed RNA editing as a tool in basic biology or as a platform for therapeutic editing.

5.
Nucleic Acids Res ; 45(5): 2797-2808, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27907896

RESUMO

Site-directed A-to-I RNA editing is a technology for re-programming genetic information at the RNA-level. We describe here the first design of genetically encodable guideRNAs that enable the re-addressing of human ADAR2 toward specific sites in user-defined mRNA targets. Up to 65% editing yield has been achieved in cell culture for the recoding of a premature Stop codon (UAG) into tryptophan (UIG). In the targeted gene, editing was very specific. We applied the technology to recode a recessive loss-of-function mutation in PINK1 (W437X) in HeLa cells and showed functional rescue of PINK1/Parkin-mediated mitophagy, which is linked to the etiology of Parkinson's disease. In contrast to other editing strategies, this approach requires no artificial protein. Our novel guideRNAs may allow for the development of a platform technology that requires only the administration or expression of a guideRNA to recode genetic information, with high potential for application in biology and medicine.


Assuntos
Adenosina Desaminase/metabolismo , Mitofagia , Mutação Puntual , Proteínas Quinases/genética , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Códon sem Sentido , Genoma , Células HEK293 , Células HeLa , Humanos , RNA Guia de Cinetoplastídeos/química , RNA Mensageiro/metabolismo , Transfecção
6.
Angew Chem Int Ed Engl ; 53(24): 6267-71, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24890431

RESUMO

Adenosine-to-inosine deamination can be re-addressed to user-defined mRNAs by applying phosphothioate/2'-methoxy-modified guideRNAs. Dense chemical modification of the guideRNA clearly improves performance of the covalent conjugates inside the living cell. Furthermore, careful positioning of a few modifications controls editing selectivity in vitro and was exploited for the challenging repair of the Factor 5 Leiden missense mutation.


Assuntos
RNA/metabolismo , Técnicas de Cultura de Células , Desaminação
7.
Nucleic Acids Res ; 42(10): e87, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24744243

RESUMO

Adenosine deaminases that act on RNA (ADAR) are a class of enzymes that catalyze the conversion of adenosine to inosine in RNA. Since inosine is read as guanosine ADAR activity formally introduces A-to-G point mutations. Re-addressing ADAR activity toward new targets in an RNA-dependent manner is a highly rational, programmable approach for the manipulation of RNA and protein function. However, the strategy encounters limitations with respect to sequence and codon contexts. Selectivity is difficult to achieve in adenosine-rich sequences and some codons, like 5'-GAG, seem virtually inert. To overcome such restrictions, we systematically studied the possibilities of activating difficult codons by optimizing the guideRNA that is applied in trans. We find that all 5'-XAG codons with X = U, A, C, G are editable in vitro to a substantial amount of at least 50% once the guideRNA/mRNA duplex is optimized. Notably, some codons, including CAG and GAG, accept or even require the presence of 5'-mismatched neighboring base pairs. This was unexpected from the reported analysis of global editing preferences on large double-stranded RNA substrates. Furthermore, we report the usage of guanosine mismatching as a means to suppress unwanted off-site editing in proximity to targeted adenosine bases. Together, our findings are very important to achieve selective and efficient editing in difficult codon and sequence contexts.


Assuntos
Adenosina Desaminase/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Pareamento Incorreto de Bases , Códon , Guanosina/química , RNA Mensageiro/química , Pequeno RNA não Traduzido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA