Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 17(5): 539-551, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29565434

RESUMO

Triple-negative breast cancer (TNBC) and malignant melanoma are highly aggressive cancers that widely express the cell surface chondroitin sulfate proteoglycan 4 (CSPG4/NG2). CSPG4 plays an important role in tumor cell growth and survival and promotes chemo- and radiotherapy resistance, suggesting that CSPG4 is an attractive target in cancer therapy. In the present work, we applied the drug delivery technology photochemical internalization (PCI) in combination with the novel CSPG4-targeting immunotoxin 225.28-saporin as an efficient and specific strategy to kill aggressive TNBC and amelanotic melanoma cells. Light-activation of the clinically relevant photosensitizer TPCS2a (fimaporfin) and 225.28-saporin was found to act in a synergistic manner, and was superior to both PCI of saporin and PCI-no-drug (TPCS2a + light only) in three TNBC cell lines (MDA-MB-231, MDA-MB-435 and SUM149) and two BRAFV600E mutated malignant melanoma cell lines (Melmet 1 and Melmet 5). The cytotoxic effect was highly dependent on the light dose and expression of CSPG4 since no enhanced cytotoxicity of PCI of 225.28-saporin compared to PCI of saporin was observed in the CSPG4-negative MCF-7 cells. The PCI of a smaller, and clinically relevant CSPG4-targeting toxin (scFvMEL-rGel) validated the CSPG4-targeting concept in vitro and induced a strong inhibition of tumor growth in the amelanotic melanoma xenograft A-375 model. In conclusion, the combination of the drug delivery technology PCI and CSPG4-targeting immunotoxins is an efficient, specific and light-controlled strategy for the elimination of aggressive cells of TNBC and malignant melanoma origin. This study lays the foundation for further preclinical evaluation of PCI in combination with CSPG4-targeting.


Assuntos
Antineoplásicos/farmacologia , Proteoglicanas de Sulfatos de Condroitina/antagonistas & inibidores , Imunotoxinas/farmacologia , Melanoma/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imunotoxinas/química , Luz , Melanoma/metabolismo , Melanoma/patologia , Proteínas de Membrana/metabolismo , Camundongos , Processos Fotoquímicos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
2.
Oncogene ; 34(44): 5582-92, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25684137

RESUMO

The number of epidermal growth factor receptor (EGFR)-targeting drugs in the development for cancer treatment is continuously increasing. Currently used EGFR-targeted monoclonal antibodies and tyrosine kinase inhibitors have specific limitations related to toxicity and development of resistance, and there is a need for alternative treatment strategies to maximize the clinical potential of EGFR as a molecular target. This study describes the design and production of a novel EGFR-targeted fusion protein, rGel/EGF, composed of the recombinant plant toxin gelonin and EGF. rGel/EGF was custom-made for administration by photochemical internalization (PCI), a clinically tested modality for cytosolic release of macromolecular therapeutics. rGel/EGF lacks efficient mechanisms for endosomal escape and is therefore minimally toxic as monotherapy. However, PCI induces selective and efficient cytosolic release of rGel/EGF in EGFR-expressing target cells by light-directed activation of photosensitizers accumulated selectively in tumor tissue. PCI of rGel/EGF was shown to be highly effective against EGFR-expressing cell lines, including head and neck squamous cell carcinoma (HNSCC) cell lines resistant to cetuximab (Erbitux). Apoptosis, necrosis and autophagy were identified as mechanisms of action following PCI of rGel/EGF in vitro. PCI of rGel/EGF was further shown as a highly tumor-specific and potent modality in vivo, with growth inhibitory effects demonstrated on A-431 squamous cell carcinoma (SCC) xenografts and reduction of tumor perfusion and necrosis induction in SCC-026 HNSCC tumors. Considering the small amount of rGel/EGF injected per animal (0.1 mg/kg), the presented in vivo results are highly promising and warrant optimization and production of rGel/EGF for further preclinical evaluation with PCI.


Assuntos
Receptores ErbB/metabolismo , Toxinas Biológicas/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Fator de Crescimento Epidérmico/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Camundongos Nus , Fotoquímica/métodos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço
3.
J Microsc ; 218(Pt 2): 133-47, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15857375

RESUMO

A photosensitizer is defined as a chemical entity, which upon absorption of light induces a chemical or physical alteration of another chemical entity. Some photosensitizers are utilized therapeutically such as in photodynamic therapy (PDT) and for diagnosis of cancer (fluorescence diagnosis, FD). PDT is approved for several cancer indications and FD has recently been approved for diagnosis of bladder cancer. The photosensitizers used are in most cases based on the porphyrin structure. These photosensitizers generally accumulate in cancer tissues to a higher extent than in the surrounding tissues and their fluorescing properties may be utilized for cancer detection. The photosensitizers may be chemically synthesized or induced endogenously by an intermediate in heme synthesis, 5-aminolevulinic acid (5-ALA) or 5-ALA esters. The therapeutic effect is based on the formation of reactive oxygen species (ROS) upon activation of the photosensitizer by light. Singlet oxygen is assumed to be the most important ROS for the therapeutic outcome. The fluorescing properties of the photosensitizers can be used to evaluate their intracellular localization and treatment effects. Some photosensitizers localize intracellularly in endocytic vesicles and upon light exposure induce a release of the contents of these vesicles, including externally added macromolecules, into the cytosol. This is the basis for a novel method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules and other molecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins, immunotoxins, gene-encoding plasmids, adenovirus, peptide-nucleic acids and the chemotherapeutic drug bleomycin. The background and present status of PDT, FD and PCI are reviewed.


Assuntos
Neoplasias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Animais , Fluorescência , Humanos , Substâncias Macromoleculares , Camundongos , Neoplasias/diagnóstico , Neoplasias/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA