Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Infect Immun ; 90(1): e0084618a, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076289

RESUMO

Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.

3.
Anal Biochem ; 638: 114413, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644544

RESUMO

Measurement of Thrombin-activatable fibrinolysis inhibitor (TAFI) in human plasma is dependent on reproducible assays. To date, standards for measuring TAFI are frequently calibrated relative to pooled normal human plasma and arbitrarily assigned a potency of 100% TAFI, despite variation in TAFI concentrations between plasma pools. Alternatively, TAFI calibrators can be assigned a value in SI units but the approach used for value assignment is not consistent and furthermore, if purified TAFI is used to determine TAFI concentration in plasma, may be adversely affected by matrix effects. A TAFI plasma standard in mass units with traceability to the SI unit of mass is desirable. We report here the establishment of a quantitative mass spectrometry method for TAFI in plasma. Traceability is obtained by reference to calibrators that consist of blank plasma spiked with a defined amount of purified TAFI, value assigned by amino acid analysis. The calibrators are run alongside the samples, using the same preparation steps and conditions; an acetonitrile assisted tryptic digestion and multi-dimensional liquid chromatography (LC) separation followed by MRM-MS analysis. We measured the TAFI quantitatively in human plasma with reproducibility, reliability and precision, and demonstrated the applicability of this approach for value assigning a common reference standard.


Assuntos
Fibrinólise/efeitos dos fármacos , Técnicas de Diluição do Indicador , Trombina/farmacologia , Humanos , Espectrometria de Massas , Trombina/química
4.
Physiol Rep ; 9(24): e15150, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957696

RESUMO

BACKGROUND: FAM20A, a recently discovered protein, is thought to have a fundamental role in inhibiting ectopic calcification. Several studies have demonstrated that variants of FAM20A are causative for the rare autosomal recessive disorder, enamel-renal syndrome (ERS). ERS is characterized by defective mineralization of dental enamel and nephrocalcinosis suggesting that FAM20A is an extracellular matrix protein, dysfunction of which causes calcification of the secretory epithelial tissues. FAM20A is a low-abundant protein that is difficult to detect in biofluids such as blood, saliva, and urine. Thus, we speculated the abundance of FAM20A to be high in human milk, since the secretory epithelium of lactating mammary tissue is involved in the secretion of highly concentrated calcium. Therefore, the primary aim of this research is to describe the processes/methodology taken to quantify FAM20A in human milk and identify other proteins involved in calcium metabolism. METHOD: This study used mass spectrometry-driven quantitative proteomics: (1) to quantify FAM20A in human milk of three women and (2) to identify proteins associated with calcium regulation by bioinformatic analyses on whole and milk fat globule membrane fractions. RESULTS: Shotgun MS/MS driven proteomics identified FAM20A in whole milk, and subsequent analysis using targeted proteomics also successfully quantified FAM20A in all samples. Combination of sample preparation, fractionation, and LC-MS/MS proteomics analysis generated 136 proteins previously undiscovered in human milk; 21 of these appear to be associated with calcium metabolism. CONCLUSION: Using mass spectrometry-driven proteomics, we successfully quantified FAM20A from transitional to mature milk and obtained a list of proteins involved in calcium metabolism. Furthermore, we show the value of using a combination of both shotgun and targeted driven proteomics for the identification of this low abundant protein in human milk.


Assuntos
Cálcio/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Redes Reguladoras de Genes/fisiologia , Lactação/metabolismo , Leite Humano/metabolismo , Proteômica/métodos , Cálcio/análise , Proteínas do Esmalte Dentário/análise , Proteínas do Esmalte Dentário/genética , Feminino , Humanos , Lactação/genética , Leite Humano/química
5.
Access Microbiol ; 3(9): 000255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712903

RESUMO

During an outbreak of invasive meningococcal disease (IMD) at the University of Southampton, UK, in 1997, two Neisseria meningitidis serogroup C isolates were retrieved from a student ('Case'), who died of IMD, and a close contact ('Carrier') who, after mouth-to-mouth resuscitation on the deceased, did not contract the disease. Genomic comparison of the isolates demonstrated extensive nucleotide sequence identity, with differences identified in eight genes. Here, comparative proteomics was used to measure differential protein expression between the isolates and investigate whether the differences contributed to the clinical outcomes. A total of six proteins were differentially expressed: four proteins (methylcitrate synthase, PrpC; hypothetical integral membrane protein, Imp; fructose-1,6-bisphosphate aldolase, Fba; aldehyde dehydrogenase A, AldA) were upregulated in the Case isolate, while one protein (Type IV pilus-associated protein, PilC2) was downregulated. Peptides for factor H binding protein (fHbp), a major virulence factor and antigenic protein, were only detected in the Case, with a single base deletion (ΔT366) in the Carrier fHbp causing lack of its expression. Expression of fHbp resulted in an increased resistance of the Case isolate to complement-mediated killing in serum. Complementation of fHbp expression in the Carrier increased its serum resistance by approximately 8-fold. Moreover, a higher serum bactericidal antibody titre was seen for the Case isolate when using sera from mice immunized with Bexsero (GlaxoSmithKline), a vaccine containing fHbp as an antigenic component. This study highlights the role of fHbp in the differential complement resistance of the Case and the Carrier isolates. Expression of fHbp in the Case resulted in its increased survival in serum, possibly leading to active proliferation of the bacteria in blood and death of the student through IMD. Moreover, enhanced killing of the Case isolate by sera raised against an fHbp-containing vaccine, Bexsero, underlines the role and importance of fHbp in infection and immunity.

6.
Vaccine ; 38(6): 1431-1435, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31839469

RESUMO

Bexsero is a multivalent vaccine containing outer membrane vesicles (OMV) derived from Neisseria meningitidis group B strain NZ98/254 and three recombinant meningococcal proteins, Neisserial adhesin A, Heparin binding antigen and factor H binding protein. OMV production relies on the growth of large-scale cultures of N. meningitidis under controlled conditions. Changes to environmental factors, such as temperature, pH, nutrient availability and trace elements, can impact the growth rate of the meningococcus. Furthermore outer membrane expression levels vary in response to the environmental milieu, thus any changes in environmental conditions can result in changes in OMV protein content. This makes consistent production of OMVs challenging and the ability to measure the protein content of the final product is desirable to ensure product quality. The aim of this work was to develop a mass spectrometry (MS) method for measuring the porin proteins and to evaluate this approach for assessing the batch consistency of Bexsero vaccine. Using isotope dilution MS, we measured the PorA and PorB content in 75 lots of Bexsero vaccine. PorA ranged from 4.0 to 5.95 µg/dose with an average of 4.8 µg/dose. PorB ranged from 5.4 to 8.7 µg/dose with an average of 6.5 µg/dose. This is the first description of the quantitative characterisation of adjuvanted Bexsero vaccine drug product at the final stage of the production process, once the aluminium adjuvanted vaccine has been packaged into syringes, to assess manufacturing consistency. The significance of our findings to quality control in the future is discussed.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis Sorogrupo B , Porinas/imunologia , Antígenos de Superfície/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Espectrometria de Massas , Neisseria meningitidis Sorogrupo B/imunologia
7.
J Biol Chem ; 294(51): 19616-19634, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31727737

RESUMO

Therapeutic mAbs are used to manage a wide range of cancers and autoimmune disorders. However, mAb-based treatments are not always successful, highlighting the need for a better understanding of the factors influencing mAb efficacy. Increased levels of oxidative stress associated with several diseases are counteracted by the activities of various oxidoreductase enzymes, such as thioredoxin (Trx), which also reduces allosteric disulfide bonds in proteins, including mAbs. Here, using an array of in vitro assays, we explored the functional effects of Trx-mediated reduction on the mechanisms of action of six therapeutic mAbs. We found that Trx reduces the interchain disulfide bonds of the mAbs, after which they remain intact but have altered function. In general, this reduction increased antigen-binding capacity, resulting in, for example, enhanced tumor necrosis factor (TNF) neutralization by two anti-TNF mAbs. Conversely, Trx reduction decreased the antiproliferative activity of an anti-tyrosine kinase-type cell-surface receptor HER2 mAb. In all of the mAbs, Fc receptor binding was abrogated by Trx activity, with significant loss in both complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) activity of the mAbs tested. We also confirmed that without alkylation, Trx-reduced interchain disulfide bonds reoxidize, and ADCC activity is restored. In summary, Trx-mediated reduction has a substantial impact on the functional effects of an mAb, including variable effects on antigen binding and Fc function, with the potential to significantly impact mAb efficacy in vivo.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Tiorredoxinas/química , Sítio Alostérico , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos/química , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/citologia , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Proteínas do Sistema Complemento , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Cinética , Leucócitos Mononucleares/citologia , Estresse Oxidativo , Oxigênio/química , Proteínas Tirosina Quinases/química , Receptor ErbB-2/química , Trastuzumab/química , Trastuzumab/farmacologia
8.
Sci Rep ; 9(1): 6843, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048732

RESUMO

Outer membrane vesicle (OMV)- based vaccines have been used to provide strain-specific protection against capsular group B Neisseria meningitidis infections, but the full breadth of the immune response against the components of the OMV has not been established. Sera from adults vaccinated with an OMV vaccine were used to screen 91 outer membrane proteins (OMPs) incorporated in an antigen microarray panel. Antigen-specific IgG levels were quantified pre-vaccination, and after 12 and 18 weeks. These results were compared with IgG levels from mice vaccinated with the same OMV vaccine. The repertoires of highly responding antigens in humans and mice overlapped, but were not identical. The highest responding antigens to human IgG comprised four integral OMPs (PorA, PorB, OpcA and PilQ), a protein which promotes the stability of PorA and PorB (RmpM) and two lipoproteins (BamC and GNA1162). These observations will assist in evaluating the role of minor antigen components within OMVs in providing protection against meningococcal infection. In addition, the relative dominance of responses to integral OMPs in humans emphasizes the importance of this subclass and points to the value of maintaining conformational epitopes from integral membrane proteins in vaccine formulations.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/uso terapêutico , Neisseria meningitidis Sorogrupo B/imunologia , Adolescente , Adulto , Animais , Vacinas Bacterianas/imunologia , Cromatografia em Gel , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Porinas/imunologia , Porinas/metabolismo , Adulto Jovem
9.
Acta bioquím. clín. latinoam ; 53(1): 43-51, mar. 2019. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1001077

RESUMO

Las epidemias de cólera afectan a un gran número de países africanos, asiáticos y del Caribe. Los cambios climatológicos y las constantes migraciones hacen que esta enfermedad se extienda, por lo que resulta necesario disponer de vacunas protectoras. En el presente trabajo se caracterizó una nueva vacuna de vesículas de membrana externa (VMEs) obtenidas de Vibrio cholerae O1 biotipo El Tor serotipo Ogawa cepa C7258, en el Instituto Finlay de vacunas (Cuba), a través de métodos proteómicos. Se identificaron 53 proteínas presentes en las VME (4 proteínas por banda electroforética) separadas por electroforesis unidimensional (1D) y digeridas con tripsina. Los fragmentos obtenidos fueron separados por cromatografía líquida de alta resolución (HPLC) acoplada a espectrometría de masa, secuenciados e identificados mediante bases de datos de proteínas Swiss-Prot y TrEMBL. El patrón proteico obtenido presentó algunas de las proteínas (12 proteínas citoplasmáticas y 5 proteínas de membrana externa) sugeridas dentro del proteoma de buena calidad para candidatos vacunales. Se estudiaron las mejores condiciones para la separación de las proteínas a través de electroforesis bidimensional. Las VME evaluadas cuentan con una composición fundamentada en proteínas necesarias para garantizar una respuesta inmune que proteja contra Vibrio cholerae O1 biotipo El Tor serotipo Ogawa.


Cholera epidemics affect a large number of African, Asian and Caribbean countries. The climate changes and the constant migrations cause this disease to spread, making it is necessary to obtain protective vaccines. In the present work, a new vaccine of outer membrane vesicles (OMV) from V. cholerae O1 El Tor biotype Ogawa serotype strain C7258 at Finlay Institute of vaccines (Cuba) was characterized by proteomic methods. A total of 53 proteins present in the OMV (approximate ratio of 4 proteins by electrophoresis band) were identified, separated by one dimension electrophoresis and digested by tripsin method. The fragments were separated by high performance liquid chromatography (HPLC) coupled to mass spectrometry, sequenced and identified, using Swiss-Prot and TrEMBL protein databases. The pattern showed some proteins (12 cytoplasmic proteins and 5 outer membrane proteins) suggested within the highest quality proteome for vaccine candidate. The best conditions for proteins separation by two dimension electrophoresis were studied. The OMV composition was based on proteins described to the immunity response and protection against V. cholerae O1 El Tor biotype Ogawa serotype.


As epidemias de cólera afetam um grande número de países africanos, asiáticos e caribenhos. As mudanças climáticas e as constantes migrações fazem com que esta doença se espalhe, portanto é necessário ter vacinas protectoras. No presente trabalho, uma nova vacina de vesículas de membrana externa (VMEs) obtidas de Vibrio cholerae 01 biotipo El Tor sorotipo Ogawa cepa C7258, no Instituto de Vacinas Finlay (Cuba), através de métodos proteômicos. Foram identificadas 53 proteínas presentes nas VME (4 proteínas por banda eletroforética) separadas por eletroforese unidimensional (1D) e digeridas com tripsina. Os fragmentos obtidos foram separados por cromatografia de alta resolução (HPLC) acoplada a espectrometria de massa, sequenciados e identificados usando bancos de dados de proteínas Swiss-Prot e TrEMBL. O padrão proteico obtido apresentou algumas das proteínas (12 proteínas citoplasmáticas e 5 proteínas de membrana externa) sugeridas dentro do proteoma de boa qualidade para candidatos vacinais. As melhores condições para a separação de proteínas através de eletroforese bidimensional foram estudadas. As VME avaliados possuem uma composição baseada em proteínas necessárias para garantir uma resposta imune que proteja contra Vibrio cholerae O1 biotipo El Tor sorotipo Ogawa.


Assuntos
Proteínas da Membrana Bacteriana Externa , Vacinas , Cólera/tratamento farmacológico , Proteômica , Espectrometria de Massas , Mudança Climática , Cólera , Cromatografia , Cromatografia Líquida de Alta Pressão , Vibrio cholerae O1 , Eletroforese , Microbiologia
10.
Stem Cells Dev ; 28(9): 565-578, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30755138

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold great promise for regenerative medicine and in vitro screening. Despite displaying key cardiomyocyte phenotypic characteristics, they more closely resemble fetal/neonatal cardiomyocytes, and further characterization is necessary. By combining the use of tandem mass tags to label cell lysates, followed by multiplexing, we have determined the effects of short-term (30 day) in vitro culture on hiPSC-CM protein expression. We found that hiPSC-CM exhibit temporal changes in global protein expression; alterations in protein expression were pronounced during the first 2 weeks following thaw and dominated by reductions in proteins associated with protein synthesis and ubiquitination. Between 2 and 4 weeks, proceeding thaw alterations in protein expression were dominated by metabolic pathways, indicating a potential temporal metabolic shift from glycolysis toward oxidative phosphorylation. Time-dependent changes in proteins associated with cardiomyocyte contraction, excitation-contraction coupling, and metabolism were detected. While some were associated with expected functional outcomes in terms of morphology or electrophysiology, others such as metabolism did not produce the anticipated maturation of hiPSC-CM. In several cases, a predicted outcome was not clear because of the concerted changes in both stimulatory and inhibitory pathways. Nevertheless, clear development of hiPSC-CM over this time period was evident.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Proteoma/análise , Células Cultivadas , Fenômenos Eletrofisiológicos , Metabolismo Energético , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Proteoma/metabolismo , Proteômica
11.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530620

RESUMO

Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.


Assuntos
Antígenos de Bactérias/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/patogenicidade , Animais , Camundongos
12.
Vaccine ; 36(29): 4339-4345, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29895503

RESUMO

The current gold-standard potency test for inactivated influenza vaccines is the single radial immunodiffusion (SRD) assay. A number of alternative potency tests for inactivated influenza vaccines have been proposed in recent years. Evaluation of these new potency tests commonly involves comparison with SRD, in order to ascertain that the new method obtains values that correlate with those measured by the standard potency test. Here, we extended comparison of two methods, reverse-phase HPLC and SDS-PAGE, with SRD by assessing the methods' capacity to detect loss of potency induced by various deliberate treatments of vaccine samples. We demonstrate that neither of these methods detected the loss of potency observed by SRD; importantly, neither SDS-PAGE nor reverse-phase HPLC reflected results from mouse experiments that showed decreased immunogenicity and protection in vivo. These results emphasise the importance of assessing the stability-indicating nature, ie the ability to measure loss of vaccine potency, of any potential new potency assay.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunodifusão/métodos , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Animais , Antígenos Virais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Tecnologia Farmacêutica/métodos , Vacinas de Produtos Inativados/imunologia
13.
Anal Biochem ; 560: 50-55, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29742446

RESUMO

Measurement of serum concentrations of Müllerian inhibiting substance (MIS), also known as anti-Müllerian Hormone (AMH) by immunoassay is gaining clinical acceptance and widespread use for the diagnosis of ovarian conditions and for prediction of the response to ovarian stimulation protocols as part of assisted reproductive therapies. Provision of an International Standard to harmonize immunoassay methods is required. It is desirable for the content of a future International Standard to be assigned in mass units for consistency with the units reported by current methods. Isotope dilution mass spectrometry (IDMS), a physicochemical method with traceability to the SI (Système International d'Unités) unit of mass, is a candidate approach to provide orthogonal data to support this mass assignment. Here, we report on the development of an IDMS method for quantitation of AMH using three peptides from different regions of the AMH monomer as surrogates for the measurement of AMH. We show the sensitivity and linearity of the standard peptides and demonstrate the reproducibility and consistency of the measurement amongst the three peptides for determining the AMH content in buffered preparations and in trial preparations of recombinant AMH, lyophilised in the presence of an excess of bovine casein.


Assuntos
Hormônio Antimülleriano/análise , Hormônio Antimülleriano/química , Espectrometria de Massas/métodos , Caseínas/química , Humanos , Técnicas de Diluição do Indicador , Isótopos/química
14.
Biologicals ; 52: 59-66, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29361371

RESUMO

Lentiviral vectors (LVs) have been successfully used in clinical trials showing long term therapeutic benefits. Studying the role of cellular proteins in lentivirus HIV-1 life cycle can help understand virus assembly and budding, leading to improvement of LV production for gene therapy. Lentiviral vectors were purified using size exclusion chromatography (SEC). The cellular protein composition of LVs produced by two different methods was compared: the transient transfection system pseudotyped with the VSV-G envelope, currently used in clinical trials, and a stable producer cell system using a non-toxic envelope derived from cat endogenous retrovirus RD114, RDpro. Proteins of LVs purified by size exclusion chromatography were identified by tandem mass spectrometry (MS/MS). A smaller number of cellular protein species were detected in stably produced vectors compared to transiently produced vector samples. This may be due to the presence of co-purified VSV-G vesicles in transiently produced vectors. AHNAK (Desmoyokin) was unique to RDpro-Env vectors. The potential role in LV particle production of selected proteins identified by MS analysis including AHNAK was assessed using shRNA gene knockdown technique. Down-regulation of the selected host proteins AHNAK, ALIX, and TSG101 in vector producer cells did not result in a significant difference in vector production.


Assuntos
Vetores Genéticos/metabolismo , Lentivirus/fisiologia , Espectrometria de Massas/métodos , Montagem de Vírus , Liberação de Vírus , Animais , Gatos , Células HEK293 , Humanos
15.
Wellcome Open Res ; 3: 151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687793

RESUMO

Background: Protein-conjugate capsular polysaccharide vaccines can potentially control invasive meningococcal disease (IMD) caused by five (A, C, W, X, Y) of the six IMD-associated serogroups.  Concerns raised by immunological similarity of the serogroup B capsule to human neural cell carbohydrates, meant that 'serogroup B substitute' vaccines target more variable subcapsular protein antigens.  A successful approach using outer membrane vesicles (OMVs) as major vaccine components had limited strain coverage. In 4CMenB (Bexsero ®), recombinant proteins have been added to ameliorate this problem.  Methods: Scalable, portable, genomic techniques were used to investigate the Bexsero ® OMV protein diversity in meningococcal populations. Shotgun proteomics identified 461 proteins in the OMV, defining a complex proteome. Amino acid sequences for the 24 proteins most likely to be involved in cross-protective immune responses were catalogued within the PubMLST.org/neisseria database using a novel OMV peptide Typing (OMVT) scheme. Results: Among these proteins there was variation in the extent of diversity and association with meningococcal lineages, identified as clonal complexes (ccs), ranging from the most conserved peptides (FbpA, NEISp0578, and putative periplasmic protein, NEISp1063) to the most diverse (TbpA, NEISp1690).  There were 1752 unique OMVTs identified amongst 2492/3506 isolates examined by whole-genome sequencing (WGS). These OMVTs were grouped into clusters (sharing ≥18 identical OMVT peptides), with 45.3% of isolates assigned to one of 27 OMVT clusters. OMVTs and OMVT clusters were strongly associated with cc, genogroup, and Bexsero ® antigen variants, demonstrating that combinations of OMV proteins exist in discrete, non-overlapping combinations associated with genogroup and Bexsero ® Antigen Sequence Type. This highly structured population of IMD-associated meningococci is consistent with strain structure models invoking host immune and/or metabolic selection. Conclusions: The OMVT scheme facilitates region-specific WGS investigation of meningococcal diversity and is an open-access, portable tool with applications for vaccine development, especially in the choice of antigen combinations, assessment and implementation.

16.
Microbiology (Reading) ; 162(2): 364-375, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678687

RESUMO

RmpM is a periplasmic protein from Neisseria meningitidis that comprises an N-terminal domain (residues 1-47) and a separate globular C-terminal domain (residues 65-219) responsible for binding to peptidoglycan. Here we show, through the use of size exclusion chromatography and pull-down assays, that a recombinant N-terminal fragment of RmpM binds to both the major outer membrane porins, PorA and PorB. Analysis by semi-native SDS-PAGE established that both recombinant full-length RmpM and an N-terminal fragment, but not the C-terminal peptidoglycan-binding domain, were sufficient to stabilize the PorA and PorB oligomeric complexes. Evidence from binding assays indicated that the meso-diaminopimelate moiety plays an important role in peptidoglycan recognition by RmpM. Site-directed mutagenesis showed that two highly conserved residues, Asp120 and Arg135, play an important role in peptidoglycan binding. The yield of outer membrane vesicles, which have been used extensively as a vaccine against N. meningitidis, was considerably higher in an N. meningitidis strain expressing a truncated N-terminal fragment of RmpM (ΔC-term rmpM) than in the WT strain. The native oligomeric state of the PorA/PorB complexes was maintained in this strain. We conclude that the dual functions of RmpM are independent, and that it is possible to use this knowledge to engineer a strain with higher yield of outer membrane vesicles, whilst preserving PorA and PorB, which are key protective antigens, in their native oligomeric state.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Neisseria meningitidis/metabolismo , Proteínas Periplásmicas/metabolismo , Porinas/metabolismo , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Ácido Diaminopimélico/metabolismo , Eletroforese em Gel de Poliacrilamida , Mutagênese Sítio-Dirigida , Peptidoglicano/metabolismo , Proteínas Periplásmicas/genética , Ligação Proteica , Estrutura Terciária de Proteína
17.
Vaccine ; 33(36): 4586-93, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26187256

RESUMO

Mumps vaccines are live attenuated viruses. They are known to vary in effectiveness, degree of attenuation and adverse event profile. However, the underlying reasons are poorly understood. We studied two closely related mumps vaccines which originate from the same attenuated Jeryl Lynn-5 strain but have different efficacies. Jeryl Lynn-Canine Kidney (JL-CK), produced on primary canine kidney cells, is less effective than RIT4385, which is produced on chicken embryo fibroblasts. JL-CK and RIT4385 could be distinguished by a number of in vitro and in vivo properties. JL-CK produced heterogeneous, generally smaller plaques than RIT4385, but gave 100-fold higher titres when grown in cells and showed a higher degree of hydrocephalus formation in neonatal rat brains. Sanger sequencing of JL-CK identified 14 regions of heterogeneity throughout the genome. Plaque purification of JL-CK demonstrated the presence of five different Jeryl Lynn-5 variants encompassing the 14 mutations. One JL-CK mutation was associated with a small plaque phenotype, the effects of the others in vitro or in vivo were less clear. Only 4% of the JL-CK population corresponded to the parental Jeryl Lynn-5 strain. Next generation sequencing of JL-CK and virus before and after growth in cell lines or neonatal rat brains showed that propagation in vitro or in vivo altered the population dramatically. Our findings indicate that growth of JL-CK in primary canine kidney cells resulted in the selection of a mixture of mumps virus variants that have different biological properties compared to the parent Jeryl Lynn-5 virus. We also report three previously unknown heterogenic regions within the N gene of the RIT4385 vaccine.


Assuntos
Vacina contra Caxumba/imunologia , Vírus da Caxumba/crescimento & desenvolvimento , Vírus da Caxumba/imunologia , Tecnologia Farmacêutica/métodos , Cultura de Vírus/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Embrião de Galinha , Modelos Animais de Doenças , Células Epiteliais , Hidrocefalia/patologia , Hidrocefalia/virologia , Vacina contra Caxumba/administração & dosagem , Dinâmica Populacional , Ratos , Carga Viral , Ensaio de Placa Viral , Virulência
18.
Virulence ; 5(8): 852-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25494856

RESUMO

Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health.


Assuntos
Bactérias/patogenicidade , Fatores de Virulência/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Evasão da Resposta Imune , Temperatura , Sensação Térmica/genética , Virulência/genética , Fatores de Virulência/genética
19.
Hum Gene Ther ; 25(11): 929-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25072415

RESUMO

Adeno-associated viral (AAV) vectors show great promise because of their excellent safety profile; however, pre-existing immune responses have necessitated the administration of high titer AAV, posing a significant challenge to the advancement of gene therapy involving AAV vectors. Recombinant AAV vectors contain minimum viral proteins necessary for their assembly and gene delivery functions. During the process of AAV assembly and production, AAV vectors acquire, inherently and submissively, various cellular proteins, but the identity of these proteins is poorly characterized. We reason that by identifying host cell proteins inherently associated with AAV vectors we may better understand the contribution of cellular components to AAV vector assembly and, ultimately, may improve the production of AAV vectors for gene therapy. In this study, three serotypes of recombinant AAV, namely AAV2, AAV5, and AAV8, were investigated. We used liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) methods to identify protein composition in purified AAV vectors, confirmed protein identities using western blotting, and explored the potential function of selected proteins in AAV vector production using small hairpin (shRNA) methods. Using LC-MS/MS, we identified 44 AAV-associated cellular proteins including Y-box binding protein (YB1). We showed for the first time that the establishment of a novel producer cell line by introducing an shRNA sequence down-regulating YB1 resulted in up to 45- and 9-fold increase in physical vector genome titers of AAV2 and AAV8, respectively, and up to 7-fold increase in AAV2 transduction vector genome titers. Our results revealed that YB1 gene knockdown promoted AAV2 rep expression and vector DNA production and reduced the number of empty particles in AAV2 products, suggesting that YB1 plays an important role in AAV vector assembly by competition with adenovirus E2A and AAV capsid proteins for binding to the inverted terminal repeat (ITR) sequence. The significance and implications of our findings in future improvement of AAV production are discussed.


Assuntos
Dependovirus/fisiologia , Anexina A5/biossíntese , Anexina A5/genética , Técnicas de Silenciamento de Genes , Terapia Genética , Células HEK293 , Humanos , Cultura de Vírus , Proteína 1 de Ligação a Y-Box/biossíntese , Proteína 1 de Ligação a Y-Box/genética
20.
Hum Vaccin Immunother ; 10(6): 1669-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637775

RESUMO

The UK anthrax vaccine is an alum precipitate of a sterile filtrate of Bacillus anthracis Sterne culture (AVP). An increase in shelf life of AVP from 3 to 5 years prompted us to investigate the in vivo potency and the antigen content of 12 batches with a shelf life of 6.4 to 9.9 years and one bulk with a shelf life of 23.8 years. All batches, except for a 9.4-year-old batch, passed the potency test. Mass spectrometry (MS) and in-gel difference 2-dimensional gel electrophoresis (DIGE) were used to examine antigens of the pellet and supernatant of AVP. The pellet contained proteins with a MW in excess of 15 kDa. DIGE of desorbed proteins from the pellet revealed that with aging, 19 spots showed a significant change in size or intensity, a sign of protein degradation. MS identified 21 proteins including protective antigen (PA), enolase, lethal factor (LF), nucleoside diphosphate kinase, edema factor, and S-layer proteins. Fifteen proteins were detected for the first time including metabolic enzymes, iron binding proteins, and manganese dependent superoxide dismutase (MnSOD). The supernatant contained131 peptide sequences. Peptides representing septum formation inhibitor protein and repeat domain protein were most abundant. Five proteins were shared with the pellet: 2,3,4,5-tetrahydropyridine-6-dicarboxylate N-succinyltransferase, enolase, LF, MnSOD, and PA. The number of peptide sequences increased with age. Peptides from PA and LF appeared once batches exceeded their shelf life by 2 and 4 years, respectively. In conclusion, changes in antigen content resulting from decay or desorption only had a limited effect on in vivo potency of AVP. The presence of PA and LF peptides in the supernatant can inform on the age and stability of AVP.


Assuntos
Vacinas contra Antraz/química , Vacinas contra Antraz/imunologia , Antígenos de Bactérias/análise , Potência de Vacina , Animais , Bacillus anthracis/imunologia , Armazenamento de Medicamentos , Eletroforese em Gel Bidimensional , Cobaias , Espectrometria de Massas , Peso Molecular , Peptídeos/análise , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA