Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Eur Respir J ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39401856

RESUMO

RATIONALE: Lung quantitative computed tomographic (qCT) severe asthma clusters have been reported, but their replication and underlying disease mechanisms are unknown. We identified and replicated qCT clusters of severe asthma in two independent asthma cohorts and determined their association with molecular pathways. METHODS: We used consensus clustering on qCT measurements of airway and lung CT scans, performed in 105 severe asthmatic adults from the U-BIOPRED cohort. The same qCT measurements were used to replicate qCT clusters in a subsample of the ATLANTIS asthma cohort (n=97). We performed integrated enrichment analysis using blood, sputum, bronchial biopsies, bronchial brushings and nasal brushings transcriptomics and blood and sputum proteomics to characterize radiomultiomic-associated clusters (RACs). RESULTS: qCT clusters and clinical features in U-BIOPRED were replicated in the matched ATLANTIS cohort. In the U-BIOPRED cohort, RAC1 (n=30) was predominantly female with elevated BMI, mild airflow limitation, normal qCT parameters and upregulation of the complement pathway. RAC2 (n=34) subjects had a lower degree of airflow limitation, airway wall thickness and dilatation, with upregulation of proliferative pathways, including neurotrophic receptor tyrosine kinase 2/tyrosine kinase receptor B (NTRK2/TRKB), and down-regulation of semaphorin pathways. RAC3 (n=41) showed increased lung attenuation area and air trapping, severe airflow limitation, hyperinflation, and upregulation of cytokine signaling and signaling by interleukin pathways, and matrix metallopeptidase 1, 2 and 9. CONCLUSIONS: U-BIOPRED severe asthma qCT clusters were replicated in a matched independent asthmatic cohort and associated with specific molecular pathways. Radiomultiomics might represent anovel strategy to identify new molecular pathways in asthma pathobiology.

2.
Front Immunol ; 15: 1450380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295871

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic underscores the critical need to integrate immunomics within the One Health framework to effectively address zoonotic diseases across humans, animals, and environments. Employing advanced high-throughput technologies, this interdisciplinary approach reveals the complex immunological interactions among these systems, enhancing our understanding of immune responses and yielding vital insights into the mechanisms that influence viral spread and host susceptibility. Significant advancements in immunomics have accelerated vaccine development, improved viral mutation tracking, and broadened our comprehension of immune pathways in zoonotic transmissions. This review highlights the role of animals, not merely as carriers or reservoirs, but as essential elements of ecological networks that profoundly influence viral epidemiology. Furthermore, we explore how environmental factors shape immune response patterns across species, influencing viral persistence and spillover risks. Moreover, case studies demonstrating the integration of immunogenomic data within the One Health framework for COVID-19 are discussed, outlining its implications for future research. However, linking humans, animals, and the environment through immunogenomics remains challenging, including the complex management of vast amounts of data and issues of scalability. Despite challenges, integrating immunomics data within the One Health framework significantly enhances our strategies and responses to zoonotic diseases and pandemic threats, marking a crucial direction for future public health breakthroughs.


Assuntos
COVID-19 , Saúde Única , SARS-CoV-2 , Zoonoses , COVID-19/imunologia , COVID-19/virologia , Humanos , Animais , SARS-CoV-2/imunologia , Zoonoses/imunologia , Zoonoses/virologia , Pandemias
3.
Comput Struct Biotechnol J ; 23: 2661-2668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39027652

RESUMO

Background: During the COVID-19 pandemic a need to process large volumes of publications emerged. As the pandemic is winding down, the clinicians encountered a novel syndrome - Post-acute Sequelae of COVID-19 (PASC) - that affects over 10 % of those who contract SARS-CoV-2 and presents a significant challenge in the medical field. The continuous influx of publications underscores a need for efficient tools for navigating the literature. Objectives: We aimed to develop an application which will allow monitoring and categorizing COVID-19-related literature through building publication networks and medical subject headings (MeSH) maps to identify key publications and networks. Methods: We introduce CORACLE (COVID-19 liteRAture CompiLEr), an innovative web application designed to analyse COVID-19-related scientific articles and to identify research trends. CORACLE features three primary interfaces: The "Search" interface, which displays research trends and citation links; the "Citation Map" interface, allowing users to create tailored citation networks from PubMed Identifiers (PMIDs) to uncover common references among selected articles; and the "MeSH" interface, highlighting current MeSH trends and their associations. Results: CORACLE leverages PubMed data to categorize literature on COVID-19 and PASC, aiding in the identification of relevant research publication hubs. Using lung function in PASC patients as a search example, we demonstrate how to identify and visualize the interactions between the relevant publications. Conclusion: CORACLE is an effective tool for the extraction and analysis of literature. Its functionalities, including the MeSH trends and customizable citation mapping, facilitate the discovery of emerging trends in COVID-19 and PASC research.

4.
Popul Health Metr ; 22(1): 10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831424

RESUMO

BACKGROUND: There are significant geographic inequities in COVID-19 case fatality rates (CFRs), and comprehensive understanding its country-level determinants in a global perspective is necessary. This study aims to quantify the country-specific risk of COVID-19 CFR and propose tailored response strategies, including vaccination strategies, in 156 countries. METHODS: Cross-temporal and cross-country variations in COVID-19 CFR was identified using extreme gradient boosting (XGBoost) including 35 factors from seven dimensions in 156 countries from 28 January, 2020 to 31 January, 2022. SHapley Additive exPlanations (SHAP) was used to further clarify the clustering of countries by the key factors driving CFR and the effect of concurrent risk factors for each country. Increases in vaccination rates was simulated to illustrate the reduction of CFR in different classes of countries. FINDINGS: Overall COVID-19 CFRs varied across countries from 28 Jan 2020 to 31 Jan 31 2022, ranging from 68 to 6373 per 100,000 population. During the COVID-19 pandemic, the determinants of CFRs first changed from health conditions to universal health coverage, and then to a multifactorial mixed effect dominated by vaccination. In the Omicron period, countries were divided into five classes according to risk determinants. Low vaccination-driven class (70 countries) mainly distributed in sub-Saharan Africa and Latin America, and include the majority of low-income countries (95.7%) with many concurrent risk factors. Aging-driven class (26 countries) mainly distributed in high-income European countries. High disease burden-driven class (32 countries) mainly distributed in Asia and North America. Low GDP-driven class (14 countries) are scattered across continents. Simulating a 5% increase in vaccination rate resulted in CFR reductions of 31.2% and 15.0% for the low vaccination-driven class and the high disease burden-driven class, respectively, with greater CFR reductions for countries with high overall risk (SHAP value > 0.1), but only 3.1% for the ageing-driven class. CONCLUSIONS: Evidence from this study suggests that geographic inequities in COVID-19 CFR is jointly determined by key and concurrent risks, and achieving a decreasing COVID-19 CFR requires more than increasing vaccination coverage, but rather targeted intervention strategies based on country-specific risks.


Assuntos
COVID-19 , Saúde Global , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/mortalidade , Fatores de Risco , Pandemias , Vacinas contra COVID-19 , Vacinação
5.
Anal Bioanal Chem ; 416(25): 5485-5496, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38940870

RESUMO

In recent years, instrumental improvements have enabled the spread of mass spectrometry-based lipidomics platforms in biomedical research. In mass spectrometry, the reliability of generated data varies for each compound, contingent on, among other factors, the availability of labeled internal standards. It is challenging to evaluate the data for lipids without specific labeled internal standards, especially when dozens to hundreds of lipids are measured simultaneously. Thus, evaluation of the performance of these platforms at the individual lipid level in interlaboratory studies is generally not feasible in a time-effective manner. Herein, using a focused subset of sphingolipids, we present an in-house validation methodology for individual lipid reliability assessment, tailored to the statistical analysis to be applied. Moreover, this approach enables the evaluation of various methodological aspects, including discerning coelutions sharing identical selected reaction monitoring transitions, pinpointing optimal labeled internal standards and their concentrations, and evaluating different extraction techniques. While the full validation according to analytical guidelines for all lipids included in a lipidomics method is currently not possible, this process shows areas to focus on for subsequent method development iterations as well as the robustness of data generated across diverse methodologies.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Lipídeos/análise , Humanos , Reprodutibilidade dos Testes , Esfingolipídeos/análise , Fenótipo , Padrões de Referência , Espectrometria de Massa com Cromatografia Líquida
6.
Respir Res ; 25(1): 86, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336805

RESUMO

BACKGROUND: Bronchopulmonary Dysplasia (BPD) in infants born prematurely is a risk factor for chronic airway obstruction later in life. The distribution of T cell subtypes in the large airways is largely unknown. OBJECTIVE: To characterize cellular and T cell profiles in the large airways of young adults with a history of BPD. METHODS: Forty-three young adults born prematurely (preterm (n = 20), BPD (n = 23)) and 45 full-term-born (asthma (n = 23), healthy (n = 22)) underwent lung function measurements, and bronchoscopy with large airway bronchial wash (BW). T-cells subsets in BW were analyzed by immunocytochemistry. RESULTS: The proportions of both lymphocytes and CD8 + T cells in BW were significantly higher in BPD (median, 6.6%, and 78.0%) when compared with asthma (3.4% and 67.8%, p = 0.002 and p = 0.040) and healthy (3.8% and 40%, p < 0.001 and p < 0.001). In all adults born prematurely (preterm and BPD), lymphocyte proportion correlated negatively with forced vital capacity (r= -0.324, p = 0.036) and CD8 + T cells correlated with forced expiratory volume in one second, FEV1 (r=-0.448, p = 0.048). Correlation-based network analysis revealed that lung function cluster and BPD-birth cluster were associated with lymphocytes and/or CD4 + and CD8 + T cells. Multivariate regression analysis showed that lymphocyte proportions and BPD severity qualified as independent factors associated with FEV1. CONCLUSIONS: The increased cytotoxic T cells in the large airways in young adults with former BPD, suggest a similar T-cell subset pattern as in the small airways, resembling features of COPD. Our findings strengthen the hypothesis that mechanisms involving adaptive and innate immune responses are involved in the development of airway disease due to preterm birth.


Assuntos
Asma , Displasia Broncopulmonar , Nascimento Prematuro , Doença Pulmonar Obstrutiva Crônica , Lactente , Feminino , Adulto Jovem , Humanos , Recém-Nascido , Displasia Broncopulmonar/diagnóstico , Volume Expiratório Forçado/fisiologia , Testes de Função Respiratória , Asma/complicações , Doença Pulmonar Obstrutiva Crônica/complicações
7.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686350

RESUMO

Aberrant mucus secretion is a hallmark of chronic obstructive pulmonary disease (COPD). Expression of the membrane-tethered mucins 3A and 3B (MUC3A, MUC3B) in human lung is largely unknown. In this observational cross-sectional study, we recruited subjects 45-65 years old from the general population of Stockholm, Sweden, during the years 2007-2011. Bronchial mucosal biopsies, bronchial brushings, and bronchoalveolar lavage fluid (BALF) were retrieved from COPD patients (n = 38), healthy never-smokers (n = 40), and smokers with normal lung function (n = 40). Protein expression of MUC3A and MUC3B in bronchial mucosal biopsies was assessed by immunohistochemical staining. In a subgroup of subjects (n = 28), MUC3A and MUC3B mRNAs were quantified in bronchial brushings using microarray. Non-parametric tests were used to perform correlation and group comparison analyses. A value of p < 0.05 was considered statistically significant. MUC3A and MUC3B immunohistochemical expression was localized to ciliated cells. MUC3B was also expressed in basal cells. MUC3A and MUC3B immunohistochemical expression was equal in all study groups but subjects with emphysema had higher MUC3A expression, compared to those without emphysema. Smokers had higher mRNA levels of MUC3A and MUC3B than non-smokers. MUC3A and MUC3B mRNA were higher in male subjects and correlated negatively with expiratory air flows. MUC3B mRNA correlated positively with total cell concentration and macrophage percentage, and negatively with CD4/CD8 T cell ratio in BALF. We concluded that MUC3A and MUC3B in large airways may be a marker of disease or may play a role in the pathophysiology of airway obstruction.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Epitélio , Tórax , Doença Pulmonar Obstrutiva Crônica/genética , Mucinas/genética
8.
Front Public Health ; 11: 1150095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143970

RESUMO

Background: The global COVID-19 pandemic is still ongoing, and cross-country and cross-period variation in COVID-19 age-adjusted case fatality rates (CFRs) has not been clarified. Here, we aimed to identify the country-specific effects of booster vaccination and other features that may affect heterogeneity in age-adjusted CFRs with a worldwide scope, and to predict the benefit of increasing booster vaccination rate on future CFR. Method: Cross-temporal and cross-country variations in CFR were identified in 32 countries using the latest available database, with multi-feature (vaccination coverage, demographic characteristics, disease burden, behavioral risks, environmental risks, health services and trust) using Extreme Gradient Boosting (XGBoost) algorithm and SHapley Additive exPlanations (SHAP). After that, country-specific risk features that affect age-adjusted CFRs were identified. The benefit of booster on age-adjusted CFR was simulated by increasing booster vaccination by 1-30% in each country. Results: Overall COVID-19 age-adjusted CFRs across 32 countries ranged from 110 deaths per 100,000 cases to 5,112 deaths per 100,000 cases from February 4, 2020 to Jan 31, 2022, which were divided into countries with age-adjusted CFRs higher than the crude CFRs and countries with age-adjusted CFRs lower than the crude CFRs (n = 9 and n = 23) when compared with the crude CFR. The effect of booster vaccination on age-adjusted CFRs becomes more important from Alpha to Omicron period (importance scores: 0.03-0.23). The Omicron period model showed that the key risk factors for countries with higher age-adjusted CFR than crude CFR are low GDP per capita and low booster vaccination rates, while the key risk factors for countries with higher age-adjusted CFR than crude CFR were high dietary risks and low physical activity. Increasing booster vaccination rates by 7% would reduce CFRs in all countries with age-adjusted CFRs higher than the crude CFRs. Conclusion: Booster vaccination still plays an important role in reducing age-adjusted CFRs, while there are multidimensional concurrent risk factors and precise joint intervention strategies and preparations based on country-specific risks are also essential.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias , Fatores de Risco , Efeitos Psicossociais da Doença , Vacinação
9.
Front Public Health ; 11: 1052946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761122

RESUMO

Background: Ninety-eight percent of documented cases of the zoonotic disease human monkeypox (MPX) were reported after 2001, with especially dramatic global spread in 2022. This longitudinal study aimed to assess spatiotemporal risk factors of MPX infection and predict global epidemiological trends. Method: Twenty-one potential risk factors were evaluated by correlation-based network analysis and multivariate regression. Country-level risk was assessed using a modified Susceptible-Exposed-Infectious-Removed (SEIR) model and a risk-factor-driven k-means clustering analysis. Results: Between historical cases and the 2022 outbreak, MPX infection risk factors changed from relatively simple [human immunodeficiency virus (HIV) infection and population density] to multiple [human mobility, population of men who have sex with men, coronavirus disease 2019 (COVID-19) infection, and socioeconomic factors], with human mobility in the context of COVID-19 being especially key. The 141 included countries classified into three risk clusters: 24 high-risk countries mainly in West Europe and Northern America, 70 medium-risk countries mainly in Latin America and Asia, and 47 low-risk countries mainly in Africa and South Asia. The modified SEIR model predicted declining transmission rates, with basic reproduction numbers ranging 1.61-7.84 in the early stage and 0.70-4.13 in the current stage. The estimated cumulative cases in Northern and Latin America may overtake the number in Europe in autumn 2022. Conclusions: In the current outbreak, risk factors for MPX infection have changed and expanded. Forecasts of epidemiological trends from our modified SEIR models suggest that Northern America and Latin America are at greater risk of MPX infection in the future.


Assuntos
COVID-19 , Infecções por HIV , Mpox , Minorias Sexuais e de Gênero , Masculino , Humanos , Pandemias , Homossexualidade Masculina , COVID-19/epidemiologia , Mpox/epidemiologia , Estudos Longitudinais , Infecções por HIV/epidemiologia , Surtos de Doenças
10.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38205966

RESUMO

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Assuntos
Asma , Multiômica , Adulto , Humanos , Consenso , Análise por Conglomerados , Algoritmos , Asma/genética
11.
Front Genet ; 13: 1010048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468026

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease caused by a multitude of underlying mechanisms, and molecular mechanistic modeling of COPD, especially at a multi-molecular level, is needed to facilitate the development of molecular diagnostic and prognostic tools and efficacious treatments. Objectives: To investigate the miRNA-mRNA-protein dysregulated network to facilitate prediction of biomarkers and disease subnetwork in COPD in women. Measurements and Results: Three omics data blocks (mRNA, miRNA, and protein) collected from BAL cells from female current-smoker COPD patients, smokers with normal lung function, and healthy never-smokers were integrated with miRNA-mRNA-protein regulatory networks to construct a COPD-specific dysregulated network. Furthermore, downstream network topology, literature annotation, and functional enrichment analysis identified both known and novel disease-related biomarkers and pathways. Both abnormal regulations in miRNA-induced mRNA transcription and protein translation repression play roles in COPD. Finally, the let-7-AIFM1-FKBP1A pathway is highlighted in COPD pathology. Conclusion: For the first time, a comprehensive miRNA-mRNA-protein dysregulated network of primary immune cells from the lung related to COPD in females was constructed to elucidate specific biomarkers and disease pathways. The multi-omics network provides a new molecular insight from a multi-molecular aspect and highlights dysregulated interactions. The highlighted let-7-AIFM1-FKBP1A pathway also indicates new hypotheses of COPD pathology.

12.
Anal Chem ; 94(42): 14618-14626, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219822

RESUMO

Octadecanoids are broadly defined as oxylipins (i.e., lipid mediators) derived from 18-carbon fatty acids. In contrast to the well-studied eicosanoids, there is a lack of analytical methods for octadecanoids, hampering further investigations in the field. We developed an integrated workflow combining chiral separation by supercritical fluid chromatography (SFC) and reversed-phase liquid chromatography (LC) coupled to tandem mass spectrometry detection for quantification of a broad panel of octadecanoids. The platform includes 70 custom-synthesized analytical and internal standards to extend the coverage of the octadecanoid synthetic pathways. A total of 103 octadecanoids could be separated by chiral SFC and complex enantioseparations could be performed in <13 min, while the achiral LC method separated 67 octadecanoids in 13.5 min. The LC method provided a robust complementary approach with greater sensitivity relative to the SFC method. Both methods were validated in solvent and surrogate matrix in terms of linearity, lower limits of quantification (LLOQ), recovery, accuracy, precision, and matrix effects. Instrumental linearity was good for both methods (R2 > 0.995) and LLOQ ranged from 0.03 to 6.00 ng/mL for SFC and 0.01 to 1.25 ng/mL for LC. The average accuracy in the solvent and surrogate matrix ranged from 89 to 109% in SFC and from 106 to 220% in LC, whereas coefficients of variation (CV) were <14% (at medium and high concentrations) and 26% (at low concentrations). Validation in the surrogate matrix showed negligible matrix effects (<16% for all analytes), and average recoveries ranged from 71 to 83%. The combined methods provide a platform to investigate the biological activity of octadecanoids and expand our understanding of these little-studied compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Fase Reversa , Oxilipinas , Solventes , Carbono
13.
Eur Respir J ; 60(3)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35210327

RESUMO

RATIONALE: Bronchopulmonary dysplasia (BPD) in preterm-born infants is a risk factor for chronic airway obstruction in adulthood. Cytotoxic T-cells are implicated in COPD, but their involvement in BPD is not known. OBJECTIVES: To characterise the distribution of airway T-cell subsets in adults with a history of BPD. METHODS: Young adults with former BPD (n=22; median age 19.6 years), age-matched adults born preterm (n=22), patients with allergic asthma born at term (n=22) and healthy control subjects born at term (n=24) underwent bronchoalveolar lavage (BAL). T-cell subsets in BAL were analysed using flow cytometry. RESULTS: The total number of cells and the differential cell counts in BAL were similar among the study groups. The percentage of CD3+CD8+ T-cells was higher (p=0.005) and the proportion of CD3+CD4+ T-cells was reduced (p=0.01) in the BPD group, resulting in a lower CD4/CD8 ratio (p=0.007) compared to the healthy controls (median 2.2 versus 5.3). In BPD and preterm-born study subjects, both CD3+CD4+ T-cells (rs=0.38, p=0.03) and CD4/CD8 ratio (rs=0.44, p=0.01) correlated positively with forced expiratory volume in 1 s (FEV1). Furthermore, CD3+CD8+ T-cells were negatively correlated with both FEV1 and FEV1/forced vital capacity (rs= -0.44, p=0.09 and rs= -0.41, p=0.01, respectively). CONCLUSIONS: Young adults with former BPD have a T-cell subset pattern in the airways resembling features of COPD. Our findings are compatible with the hypothesis that CD3+CD8+ T-cells are involved in mechanisms behind chronic airway obstruction in these patients.


Assuntos
Obstrução das Vias Respiratórias , Displasia Broncopulmonar , Doença Pulmonar Obstrutiva Crônica , Adulto , Linfócitos T CD8-Positivos , Volume Expiratório Forçado , Humanos , Recém-Nascido , Adulto Jovem
14.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34824054

RESUMO

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Assuntos
Antiasmáticos , Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/genética , Carnitina/uso terapêutico , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Membro 5 da Família 22 de Carreadores de Soluto
16.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864875

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), rapidly became a global health challenge, leading to unprecedented social and economic consequences. The mechanisms behind the pathogenesis of SARS-CoV-2 are both unique and complex. Omics-scale studies are emerging rapidly and offer a tremendous potential to unravel the puzzle of SARS-CoV-2 pathobiology, as well as moving forward with diagnostics, potential drug targets, risk stratification, therapeutic responses, vaccine development and therapeutic innovation. This review summarizes various aspects of understanding multiomics integration-based molecular characterizations of COVID-19, which to date include the integration of transcriptomics, proteomics, genomics, lipidomics, immunomics and metabolomics to explore virus targets and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers an abridgment of omics investigations related to disease pathogenesis and virulence, the role of host genetic variation and a broad array of immune and inflammatory phenotypes contributing to understanding COVID-19 traits. Insights into this review, which combines existing strategies and multiomics integration profiling, may help further advance our knowledge of COVID-19.


Assuntos
COVID-19 , Genômica , Pandemias , SARS-CoV-2 , Biologia de Sistemas , COVID-19/epidemiologia , COVID-19/genética , COVID-19/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
17.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948231

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an unmet need of biomarkers that can aid in the diagnostic and prognostic assessment of the disease and response to treatment. In this two-part explorative proteomic study, we demonstrate how proteins associated with tissue remodeling, inflammation and chemotaxis such as MMP7, CXCL13 and CCL19 are released in response to aberrant extracellular matrix (ECM) in IPF lung. We used a novel ex vivo model where decellularized lung tissue from IPF patients and healthy donors were repopulated with healthy fibroblasts to monitor locally released mediators. Results were validated in longitudinally collected serum samples from 38 IPF patients and from 77 healthy controls. We demonstrate how proteins elevated in the ex vivo model (e.g., MMP7), and other serum proteins found elevated in IPF patients such as HGF, VEGFA, MCP-3, IL-6 and TNFRSF12A, are associated with disease severity and progression and their response to antifibrotic treatment. Our study supports the model's applicability in studying mechanisms involved in IPF and provides additional evidence for both established and potentially new biomarkers in IPF.


Assuntos
Biomarcadores/metabolismo , Microambiente Celular/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Idoso , Quimiocina CCL7/metabolismo , Quimiocina CXCL13/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteômica/métodos , Receptor de TWEAK/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Anal Chem ; 93(12): 5248-5258, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33739820

RESUMO

Urine is a noninvasive biofluid that is rich in polar metabolites and well suited for metabolomic epidemiology. However, because of individual variability in health and hydration status, the physiological concentration of urine can differ >15-fold, which can pose major challenges in untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Although numerous urine normalization methods have been implemented (e.g., creatinine, specific gravity-SG), most are manual and, therefore, not practical for population-based studies. To address this issue, we developed a method to measure SG in 96-well-plates using a refractive index detector (RID), which exhibited accuracy within 85-115% and <3.4% precision. Bland-Altman statistics showed a mean deviation of -0.0001 SG units (limits of agreement: -0.0014 to 0.0011) relative to a hand-held refractometer. Using this RID-based SG normalization, we developed an automated LC-MS workflow for untargeted urinary metabolomics in a 96-well-plate format. The workflow uses positive and negative ionization HILIC chromatography and acquires mass spectra in data-independent acquisition (DIA) mode at three collision energies. Five technical internal standards (tISs) were used to monitor data quality in each method, all of which demonstrated raw coefficients of variation (CVs) < 10% in the quality controls (QCs) and < 20% in the samples for a small cohort (n = 87 urine samples, n = 22 QCs). Application in a large cohort (n = 842 urine samples, n = 248 QCs) demonstrated CVQC < 5% and CVsamples < 16% for 4/5 tISs after signal drift correction by cubic spline regression. The workflow identified >540 urinary metabolites including endogenous and exogenous compounds. This platform is suitable for performing urinary untargeted metabolomic epidemiology and will be useful for applications in population-based molecular phenotyping.


Assuntos
Líquidos Corporais , Metabolômica , Cromatografia Líquida , Humanos , Espectrometria de Massas , Fluxo de Trabalho
20.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667261

RESUMO

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Assuntos
Asma/metabolismo , Biomarcadores/urina , Inflamação/metabolismo , Leucotrieno E4/metabolismo , Leucotrieno E4/urina , Prostaglandinas/metabolismo , Prostaglandinas/urina , Adulto , Asma/fisiopatologia , Feminino , Humanos , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA