Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMJ Mil Health ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373790

RESUMO

INTRODUCTION: V̇O2 drift, the rise in oxygen consumption during continuous exercise, has not been adequately reported during prolonged military marches. The purpose of this study was to analyse V̇O2 and energy expenditure (EE) during a loaded march with and without rehydration efforts. Second, the study aimed to compare EE throughout the march with predicted values using a validated model. METHODS: Seven healthy men (23±2 years; V̇O2max: 50.8±5.3 mL/kg/min) completed four 60 min loaded marches (20.4 kg at 50% V̇O2max) in a warm environment (30°C and 50% relative humidity). Three were preceded by hypohydration via a 4-hour cold water immersion (18°C). The control (CON) visit was a non-immersed euhydrated march. After water immersion, subjects were rehydrated with 0% (NO), 50% (HALF) or 100% (FULL) of total body mass lost. During exercise, V̇O2 and EE were collected and core temperature change was calculated. To determine if EE could be accurately predicted, values were compared with a calculated estimate using the US Army Load Carry Decision Aid (LCDA). RESULTS: At the start of exercise, there was no difference between conditions in V̇O2 (ALL: 24.3±0.3 mL/kg/min; p=0.50) or EE (ALL: 8.6±1.0 W/kg; p=0.68). V̇O2 (p=0.02) and EE (p<0.01) increased during exercise and were 12.3±10.0% and 12.8±9.5% greater, respectively, at 60 min across all trials and were not mitigated by rehydration amount. There was an effect of core temperature change on V̇O2 for each condition (CON: r=0.62; NO: r=0.47; HALF: r=0.70; FULL: r=0.55). LCDA-predicted values were different from measured EE during exercise. CONCLUSION: V̇O2 drift occurred during loaded military marches and was associated with increases in EE and core temperature change. Pre-exercise hypohydration with water immersion followed by rehydration did not influence the degree of drift. LCDA prediction of EE may not agree with measured values during prolonged loaded marches where V̇O2 drift occurs.

2.
J Strength Cond Res ; 38(2): 290-296, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258830

RESUMO

ABSTRACT: Wheelock, CE, Stooks, J, Schwob, J, Hess, HW, Pryor, RR, and Hostler, D. Partial and complete fluid replacement maintains exercise performance in a warm environment following prolonged cold-water immersion. J Strength Cond Res 38(2): 290-296, 2024-Special warfare operators may be exposed to prolonged immersion before beginning a land-based mission. This immersion will result in substantial hypohydration because of diuresis. This study tested the hypothesis that both partial and full postimmersion rehydration would maintain performance during exercise in the heat. Seven men (23 ± 2 years; V̇o2max: 50.8 ± 5.3 ml·kg-1·min-1) completed a control trial (CON) without prior immersion and 3 immersion (18.0°C) trials without rehydration (NO) or with partial (HALF) or full (FULL) rehydration. After immersion, subjects completed a 60-minute weighted ruck march (20.4 kg; 5.6 kph) and a 15-minute intermittent exercise protocol (iEPT) in a warm environment (30.0°C and 50.0% relative humidity). The primary outcome was distance (km) covered during the iEPT. A priori statistical significance was set to p ≤ 0.05. Immersion resulted in 2.3 ± 0.4% loss of body mass in all immersion trials (p < 0.01). Distance covered during the first 13-minute interval run portion of iEPT was reduced in the NO rehydration trial (1.59 ± 0.18 km) compared with all other conditions (CON: 1.88 ± 0.18 km, p = 0.03; HALF: 1.80 ± 0.18 km, p < 0.01; FULL: 1.86 ± 0.28 km, p = 0.01). During the final 2 minutes of the iEPT, distance in the NO rehydration trial (0.31 ± 0.07 km) was reduced compared with the FULL rehydration trial (0.37 ± 0.07 km; p < 0.01) but not compared with CON (0.35 ± 0.07 km; p = 0.09) or HALF (0.35 ± 0.07 km; p = 0.08). Both partial and full postimmersion fluid replacement maintained intermittent exercise performance and should be applied as rehydration strategies.


Assuntos
Hidratação , Imersão , Masculino , Humanos , Exercício Físico , Temperatura Alta , Água
3.
Mil Med ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776545

RESUMO

INTRODUCTION: We tested the hypothesis that a carbohydrate (CHO: 6.5%) or carbohydrate-electrolyte (CHO + E: 6.5% + 50 mmol/L NaCl) drink would better recover plasma volume (PV) and exercise performance compared to water (H2O) after immersion diuresis. METHODS: Twelve men (24 ± 2 years; 82.4 ± 15.5 kg; and V̇O2max: 49.8 ± 5.1 mL · kg-1 · min-1) completed four experimental visits: a no-immersion control (CON) and three 4-h cold-water (18.0 °C) immersion trials (H2O, CHO, and CHO + E) followed by exercise in a warm environment (30 °C, 50% relative humidity). The exercise was a 60-minute loaded march (20.4 kg; 55% VO2max) followed by a 10-minute intermittent running protocol. After immersion, subjects were rehydrated with 100% of body mass loss from immersion diuresis during the ruck march. PV is reported as a percent change after immersion, after the ruck march, and after the intermittent running protocol. The intermittent running protocol distance provided an index of exercise performance. Data are reported as mean ± SD. RESULTS: After immersion, body mass loss was 2.3 ± 0.7%, 2.3 ± 0.5%, and 2.3 ± 0.6% for H2O, CHO, and CHO + E. PV loss after immersion was 19.8 ± 8.5% in H2O, 18.2 ± 7.0% in CHO, and 13.9 ± 9.3% in CHO + E, which was reduced after the ruck march to 14.7 ± 4.7% (P = .13) in H2O, 8.8 ± 8.3% (P < .01) in CHO, and 4.4 ± 10.9% (P = .02) in CHO + E. The intermittent running protocol distance was 1.4 ± 0.1 km in CON, 1.4 ± 0.2 km in H2O, 1.4 ± 0.1 km in CHO, and 1.4 ± 0.2 km in CHO + E (P = .28). CONCLUSIONS: Although CHO and CHO + E better restored PV after immersion, post-immersion exercise performance was not augmented compared to H2O, highlighting that fluid replacement following immersion diuresis should focus on restoring volume lost rather than fluid constituents.

4.
Mil Med ; 188(9-10): 3071-3078, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35822881

RESUMO

INTRODUCTION: It is unclear whether immersion heat acclimation benefits exercise in warm water conditions. This study examined the effects of heat acclimation strategies on heart rate (HR), core temperature, and time to exhaustion (TTE) during cycling exercise in varying warm water conditions. METHODS: Twenty male divers completed this study at the Navy Experimental Diving Unit. Subjects were randomly assigned to one of two 9-day heat acclimation groups. The first group (WARM; n = 10) cycled for 2 hours at 50 W in 34.4 °C water, while the second group (HOT; n = 10) cycled for 1 hour against minimal resistance in 36.7 °C water. Following acclimation, TTE was tested by underwater cycling (30 W) in 35.8 °C, 37.2 °C, and 38.6 °C water. RESULTS: Throughout acclimation, the rate of core temperature rise in the first 30 minutes of exercise increased (P = .02), but the maximum core temperature reached was not different for either group. Time to exhaustion (TTE) was reduced, and the rate of core temperature rise during performance testing increased (both P < .001) with increasing water temperature but was not different between groups. Core temperature and HR increased throughout performance testing in each water condition and were lower in the HOT compared to the WARM acclimation group (all P < .05) with the exception of core temperature in the 37.2 °C condition. CONCLUSIONS: Underwater exercise performance did not differ between the two acclimation strategies. This study suggests that passive acclimation to a higher water temperature may improve thermoregulatory and cardiovascular responses to exercise in warm water. Hot water immersion adaptations are dependent on exercise intensity and water temperature.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Humanos , Masculino , Regulação da Temperatura Corporal/fisiologia , Aclimatação/fisiologia , Exercício Físico/fisiologia , Adaptação Fisiológica , Temperatura Alta , Febre , Água , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia
5.
Undersea Hyperb Med ; 49(4): 459-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36446291

RESUMO

Purpose: In a disabled submarine scenario, a pressurized rescue module (PRM) may be deployed to rescue survivors. If the PRM were to become disabled, conditions could become hot and humid exposing the occupants to heat stress. We tested the hypothesis that the rise in core temperature and fluid loss from sweating would increase with rising dry bulb temperature. Methods: Twelve males (age 22 ± 3 years; height 179 ± 7 cm; mass 77.4 ± 8.3 kg) completed this study. On three occasions, subjects were exposed to high humidity and either 28-, 32-, or 35˚C for six hours in a dry hyperbaric chamber pressurized to 6.1 msw. Changes in core temperature (Tc) and body mass were recorded and linear regression lines fit to estimate the predicted rise in Tc and loss of fluid from sweating. Results: Heart rate was higher in the 35°C condition compared to the 28°C and 32°C conditions. Tc was higher in the 32°C condition compared to 28°C and higher in 35°C compared to the 28˚°C and 32°C conditions. Projected fluid loss in all of the tested conditions could exceed 6% of body mass after 24 hours of exposure endangering the health of sailors in a DISSUB or disabled PRM. A fluid intake of 1.0 to 3.5 L would be required to limit dehydration to 2% or 4% of initial mass depending upon condition. Conclusions: Prolonged exposure to 35°C conditions under pressure results in uncompensable heat stress. 32°C and 35°C exposures were compensable under these conditions but further research is required to elucidate the effect of increased ambient pressure on thermoregulation.


Assuntos
Estatura , Regulação da Temperatura Corporal , Masculino , Humanos , Adulto Jovem , Adulto , Umidade , Frequência Cardíaca , Modelos Lineares
6.
Undersea Hyperb Med ; 49(2): 197-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35580487

RESUMO

Purpose: Diving in warm water increases thermal risk during exercise compared to thermoneutral waters. The purpose of this study was to evaluate exercise endurance in warm- and hot-water conditions in divers habituated to wet or dry heat. Methods: Nineteen male divers completed this study at the Navy Experimental Diving Unit. Subjects were assigned DRY or WET heat habituation groups. The DRY group (n=9) cycled at 125-150W for one hour in a non-immersed condition (34.4˚C, 50%RH), while the WET group (n=10) cycled at 50W for one hour while immersed in 34.4˚C water. Exercise time to exhaustion was tested on an underwater cycle ergometer in 35.8˚C (WARM) and 37.2˚C (HOT) water at 50W. Core temperature (Tc) was continuously recorded and for all dives. Results: Time to exhaustion was reduced in HOT compared to WARM water (p ≺0.01) in both DRY (92.7 ± 41.6 minutes in 35.8°C vs. 43.4 ± 17.5 minutes in 37.2°C) and WET (95.9 ± 39.2 minutes in 35.8°C vs. 53.4 ± 27.5 minutes in 37.2°C) groups, but did not differ between groups (p=0.62). Rate of Tc rise was greater with higher water temperature (p ≺0.01), but was not different between groups (p=0.68). Maximum Tc (p=0.94 and p=0.95) and Tc change from baseline (p=0.38 and p=0.34) was not different between water temperatures or habituation group, respectively. Conclusion: Endurance decreased with increased water temperature but was not different between WET and DRY. Divers became exhausted at a similar core temperature during WARM- and HOT-water exercise. Mechanisms and applications of heat acclimation for warm-water diving should be further explored.


Assuntos
Mergulho , Imersão , Temperatura Corporal , Mergulho/efeitos adversos , Exercício Físico , Temperatura Alta , Humanos , Masculino , Água
7.
Undersea Hyperb Med ; 48(4): 469-476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847312

RESUMO

Exposure to a reduction in ambient pressure such as in high-altitude climbing, flying in aircrafts, and decompression from underwater diving results in circulating vascular gas bubbles (i.e., venous gas emboli [VGE]). Incidence and severity of VGE, in part, can objectively quantify decompression stress and risk of decompression sickness (DCS) which is typically mitigated by adherence to decompression schedules. However, dives conducted at altitude challenge recommendations for decompression schedules which are limited to exposures of 10,000 feet in the U.S. Navy Diving Manual (Rev. 7). Therefore, in an ancillary analysis within a larger study, we assessed the evolution of VGE for two hours post-dive using echocardiography following simulated altitude dives at 12,000 feet. Ten divers completed two dives to 66 fsw (equivalent to 110 fsw at sea level by the Cross correction method) for 30 minutes in a hyperbaric chamber. All dives were completed following a 60-minute exposure at 12,000 feet. Following the dive, the chamber was decompressed back to altitude for two hours. Echocardiograph measurements were performed every 20 minutes post-dive. Bubbles were counted and graded using the Germonpré and Eftedal and Brubakk method, respectively. No diver presented with symptoms of DCS following the dive or two hours post-dive at altitude. Despite inter- and intra-diver variability of VGE grade following the dives, the majority (11/20 dives) presented a peak VGE Grade 0, three VGE Grade 1, one VGE Grade 2, four VGE Grade 3, and one VGE Grade 4. Using the Cross correction method for a 66-fsw dive at 12,000 feet of altitude resulted in a relatively low decompression stress and no cases of DCS.

8.
Undersea Hyperb Med ; 48(2): 107-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975401

RESUMO

Introduction: Pre-dive altitude exposure may increase respiratory fatigue and subsequently augment exercise ventilation at depth. This study examined pre-dive altitude exposure and the efficacy of resistance respiratory muscle training (RMT) on respiratory fatigue while diving at altitude. Methods: Ten men (26±5 years; VO2peak: 39.8±3.3 mL• kg-1•min-1) performed three dives; one control (ground level) and two simulated altitude dives (3,658 m) to 17 msw, relative to ground level, before and after four weeks of resistance RMT. Subjects performed pulmonary function testing (e.g., inspiratory [PI] and expiratory [PE] pressure testing) pre- and post-RMT and during dive visits. During each dive, subjects exercised for 18 minutes at 55% VO2peak, and ventilation (VE), breathing frequency (ƒb,), tidal volume (VT) and rating of perceived exertion (RPE) were measured. Results: Pre-dive altitude exposure reduced PI before diving (p=0.03), but had no effect on exercise VE, ƒb, or VT at depth. At the end of the dive in the pre-RMT condition, RPE was lower (p=0.01) compared to control. RMT increased PI and PE (p<0.01). PE was reduced from baseline after diving at altitude (p<0.03) and this was abated after RMT. RMT did not improve VE or VT at depth, but decreased ƒb (p=0.01) and RPE (p=0.048) during the final minutes of exercise. Conclusion: Acute altitude exposure pre- and post-dive induces decrements in PI and PE before and after diving, but does not seem to influence ventilation at depth. RMT reduced ƒb and RPE during exercise at depth, and may be useful to reduce work of breathing and respiratory fatigue during dives at altitude.


Assuntos
Altitude , Exercícios Respiratórios/métodos , Mergulho/fisiologia , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Trabalho Respiratório/fisiologia , Adulto , Análise de Variância , Exposição Ambiental , Expiração/fisiologia , Frequência Cardíaca , Humanos , Inalação/fisiologia , Masculino , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Treinamento Resistido/métodos , Testes de Função Respiratória , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo
9.
Undersea Hyperb Med ; 48(2): 119-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33975402

RESUMO

Exposure to a reduction in ambient pressure such as in high-altitude climbing, flying in aircrafts, and decompression from underwater diving results in circulating vascular gas bubbles (i.e., venous gas emboli [VGE]). Incidence and severity of VGE, in part, can objectively quantify decompression stress and risk of decompression sickness (DCS) which is typically mitigated by adherence to decompression schedules. However, dives conducted at altitude challenge recommendations for decompression schedules which are limited to exposures of 10,000 feet in the U.S. Navy Diving Manual (Rev. 7). Therefore, in an ancillary analysis within a larger study, we assessed the evolution of VGE for two hours post-dive using echocardiography following simulated altitude dives at 12,000 feet. Ten divers completed two dives to 66 fsw (equivalent to 110 fsw at sea level by the Cross correction method) for 30 minutes in a hyperbaric chamber. All dives were completed following a 60-minute exposure at 12,000 feet. Following the dive, the chamber was decompressed back to altitude for two hours. Echocardiograph measurements were performed every 20 minutes post-dive. Bubbles were counted and graded using the Germonpré and Eftedal and Brubakk method, respectively. No diver presented with symptoms of DCS following the dive or two hours post-dive at altitude. Despite inter- and intra-diver variability of VGE grade following the dives, the majority (11/20 dives) presented a peak VGE Grade 0, three VGE Grade 1, one VGE Grade 2, four VGE Grade 3, and one VGE Grade 4. Using the Cross correction method for a 66-fsw dive at 12,000 feet of altitude resulted in a relatively low decompression stress and no cases of DCS.


Assuntos
Altitude , Mergulho/fisiologia , Embolia Aérea/diagnóstico por imagem , Adulto , Pressão Atmosférica , Exercícios Respiratórios , Descompressão/métodos , Descompressão/estatística & dados numéricos , Doença da Descompressão/etiologia , Doença da Descompressão/prevenção & controle , Ecocardiografia , Embolia Aérea/etiologia , Humanos , Masculino , Valores de Referência , Água do Mar , Treinamento por Simulação , Fatores de Tempo
10.
Aerosp Med Hum Perform ; 91(10): 776-784, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187563

RESUMO

INTRODUCTION: Hypoxia-induced hyperventilation is an effect of acute altitude exposure, which may lead to respiratory muscle fatigue and secondary locomotor muscle fatigue. The purpose of this study was to determine if resistive and/or endurance respiratory muscle training (RRMT and ERMT, respectively) vs. placebo respiratory muscle training (PRMT) improve cycling performance at altitude.METHODS: There were 24 subjects who were assigned to PRMT (N 8), RRMT (N 8), or ERMT (N 8). Subjects cycled to exhaustion in a hypobaric chamber decompressed to 3657 m (12,000 ft) at an intensity of 55% sea level maximal oxygen consumption (Vo2max) before and after respiratory muscle training (RMT). Additionally, subjects completed a Vo2max, pulmonary function, and respiratory endurance test (RET) before and after RMT. All RMT protocols consisted of three 30-min training sessions per week for 4 wk.RESULTS: The RRMT group increased maximum inspiratory (PImax) and expiratory (PEmax) mouth pressure after RMT (PImax: 117.7 11.6 vs. 162.6 20.0; PEmax: 164.0 33.2 vs. 216.5 44.1 cmH2O). The ERMT group increased RET after RMT (5.2 5.2 vs.18.6 16.9 min). RMT did not improve Vo2max in any group. Both RRMT and ERMT groups increased cycling time to exhaustion (RRMT: 35.9 17.2 vs. 45.6 22.2 min and ERMT: 33.8 9.6 vs. 42.9 27.0 min).CONCLUSION: Despite different improvements in pulmonary function, 4 wk of RRMT and ERMT both improved cycle time to exhaustion at altitude.Wheelock CE, Hess HW, Johnson BD, Schlader ZJ, Clemency BM, St. James E, Hostler D. Endurance and resistance respiratory muscle training and aerobic exercise performance in hypobaric hypoxia. Aerosp Med Hum Perform. 2020; 91(10):776784.


Assuntos
Exercícios Respiratórios , Resistência Física , Exercício Físico , Teste de Esforço , Humanos , Hipóxia , Consumo de Oxigênio , Músculos Respiratórios
11.
Undersea Hyperb Med ; 47(2): 253-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574442

RESUMO

Background: Cold-water immersion impairs manual dexterity when finger temperature is below 15°C. This exposes divers to increased risk of error. We hypothesized that whole-body active heating would maintain finger temperatures and dexterity during cold-water immersion. Methods: Twelve subjects (six males) (22 ± 2 years old; BMI 23.9 ± 2.5; body fat 16 ± 6%) completed 60-minute head-out water immersion (HOWI) wearing a 7mm wetsuit and 3mm gloves in thermoneutral water (TN 25°C) and cold water (CW 10°C) while wearing a water-perfused suit (WP) with 37°C water circulated over the torso, arms, and legs. Gross (Minnesota Manual Dexterity Test [MMDT]) and fine (modified Purdue Pegboard [PPT]) dexterity were assessed before, during and after immersion. Core body and skin temperatures were recorded every 10 minutes. Results: MMDT (TN -25 ± 14%; CW -72 ± 23%; WP -67 ± 29%; p<0.05) and PPT (TN -16 ± 9%; CW: -45 ± 10%; WP: -38 ± 13%; p<0.05) performance decreased during immersion. MMDT and PPT did not differ between CW and WP. Immediately following immersion gross dexterity was recovered in all conditions. Post-immersion fine dexterity was still impaired in CW (p<0.01), but not WP or TN. Core and skin temperatures decreased during immersion in CW and WP (p<0.05) but did not differ between CW and WP. Conclusion: Manual dexterity decreased during immersion. Dexterity was further impaired during cold-water immersion and was not maintained by water perfusion active heating. Warm water perfusion did not maintain finger temperature above 15°C but hand temperature remained above these limits, suggesting a need to reassess thermal thresholds for working divers in cold-water conditions.


Assuntos
Temperatura Corporal , Temperatura Baixa/efeitos adversos , Dedos/fisiopatologia , Imersão/efeitos adversos , Destreza Motora/fisiologia , Índice de Massa Corporal , Feminino , Humanos , Imersão/fisiopatologia , Masculino , Temperatura Cutânea/fisiologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA