Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Water Res ; 259: 121794, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824796

RESUMO

Legionella is an opportunistic waterborne pathogen that causes Legionnaires' disease. It poses a significant public health risk, especially to vulnerable populations in health care facilities. It is ubiquitous in manufactured water systems and is transmitted via inhalation or aspiration of aerosols/water droplets generated from water fixtures (e.g., showers and hand basins). As such, the effective management of premise plumbing systems (building water systems) in health care facilities is essential for reducing the risk of Legionnaires' disease. Chemical disinfection is a commonly used control method and chlorine-based disinfectants, including chlorine, chloramine, and chlorine dioxide, have been used for over a century. However, the effectiveness of these disinfectants in premise plumbing systems is affected by various interconnected factors that can make it challenging to maintain effective disinfection. This systematic literature review identifies all studies that have examined the factors impacting the efficacy and decay of chlorine-based disinfectant within premise plumbing systems. A total of 117 field and laboratory-based studies were identified and included in this review. A total of 20 studies directly compared the effectiveness of the different chlorine-based disinfectants. The findings from these studies ranked the typical effectiveness as follows: chloramine > chlorine dioxide > chlorine. A total of 26 factors were identified across 117 studies as influencing the efficacy and decay of disinfectants in premise plumbing systems. These factors were sorted into categories of operational factors that are changed by the operation of water devices and fixtures (such as stagnation, temperature, water velocity), evolving factors which are changed in-directly (such as disinfectant concentration, Legionella disinfectant resistance, Legionella growth, season, biofilm and microbe, protozoa, nitrification, total organic carbon(TOC), pH, dissolved oxygen(DO), hardness, ammonia, and sediment and pipe deposit) and stable factors that are not often changed(such as disinfectant type, pipe material, pipe size, pipe age, water recirculating, softener, corrosion inhibitor, automatic sensor tap, building floor, and construction activity). A factor-effect map of each of these factors and whether they have a positive or negative association with disinfection efficacy against Legionella in premise plumbing systems is presented. It was also found that evaluating the effectiveness of chlorine disinfection as a water risk management strategy is further complicated by varying disinfection resistance of Legionella species and the form of Legionella (culturable/viable but non culturable, free living/biofilm associated, intracellular replication within amoeba hosts). Future research is needed that utilises sensors and other approaches to measure these key factors (such as pH, temperature, stagnation, water age and disinfection residual) in real time throughout premise plumbing systems. This information will support the development of improved models to predict disinfection within premise plumbing systems. The findings from this study will inform the use of chlorine-based disinfection within premise plumbing systems to reduce the risk of Legionnaires disease.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38673366

RESUMO

Methamphetamine contamination of residential properties remains a serious public health concern for members of the public. External stakeholders including Environmental Health Officers (EHOs) and testing and remediation technicians are engaged on investigating whether contamination has occurred from manufacturing or smoking processes. More specifically, local council EHOs are responsible for managing clandestine drug laboratories when notified by police and also for responding to public enquiries. However, the full scope of these contaminated properties is not seen by any single stakeholder, making it very challenging to quantify these situations. To evaluate the prevalence of methamphetamine related enquiries from the general public to EHOs, this study surveyed and interviewed officers from around Australia. It was found that public enquiries were infrequent with only 6% of respondents having received enquiries in the last month, which indicates that people are seeking information from other sources. Interestingly, there were case study scenarios that also mentioned issues with awareness and the flow of information. Concerns regarding difficult cases, police notifications, and site visits were also highlighted. The results of this study provide a benchmark of how methamphetamine related cases are managed and highlight the need for trustworthy information that is available to EHOs, governments, industry members, and the public in a unified location.


Assuntos
Governo Local , Metanfetamina , Humanos , Austrália , Saúde Ambiental , Inquéritos e Questionários , Prevalência , Polícia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37510617

RESUMO

Climate change is the most urgent and significant public health risk facing the globe. In Australia, it has been identified that Environmental Health Officers/Practitioners (EHOs/EHPs, hereafter EHOs) are a currently underutilized source of knowledge and skills that can contribute to climate change adaptation planning at the local government level. The ability of local government EHOs to utilize their local knowledge and skills in human health risk assessment during a public health emergency was demonstrated through their role in the response to COVID-19. This study used a survey and follow up interviews to examine the roles and responsibilities of EHOs during the COVID-19 pandemic and used the results to examine the potential of the workforce to tackle climate change and health related issues. What worked well, what regulatory tools were helpful, how interagency collaboration worked and what barriers or hindering factors existed were also explored. A workforce review of EHOs in South Australia was also undertaken to identify current and future challenges facing EHOs and their capacity to assist in climate change preparedness. The findings demonstrated that the workforce was used in the response to COVID-19 for varying roles by councils, including in education and communication (both internally and externally) as well as monitoring and reporting compliance with directions. Notably, half the workforce believed they could have been better utilized, and the other half thought they were well utilized. The South Australian Local Government Functional Support Group (LGFSG) was praised by the workforce for a successful approach in coordinating multiagency responses and communicating directions in a timely fashion. These lessons learnt from the COVID-19 pandemic should be incorporated into climate change adaptation planning. To ensure consistent messaging and a consolidated information repository, a centralized group should be used to coordinate local government climate change adaptation plans in relation to environmental health and be included in all future emergency management response plans. The surveyed EHOs identified environmental health issues associated with climate change as the most significant future challenge; however, concerningly, participants believe that a lack of adequate resourcing, leading to workforce shortages, increasing workloads and a lack of support, is negatively impacting the workforce's preparedness to deal with these emerging issues. It was suggested that the misperception of environmental health and a failure to recognize its value has resulted in a unique dilemma where EHOs and their councils find themselves caught between managing current workload demands and issues, and endeavouring to prepare, as a priority, for emerging environmental health issues associated with climate change and insufficient resources.


Assuntos
COVID-19 , Governo Local , Humanos , Austrália , Austrália do Sul , Mudança Climática , Pandemias/prevenção & controle , COVID-19/epidemiologia , Saúde Ambiental , Recursos Humanos
4.
Water Res ; 243: 120363, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494744

RESUMO

In recent years, the frequency of nosocomial infections has increased. Hospital water systems support the growth of microbes, especially opportunistic premise plumbing pathogens. In this study, planktonic prokaryotic communities present in water samples taken from hospital showers and hand basins, collected over three different sampling phases, were characterized by 16S rRNA gene amplicon sequencing. Significant differences in the abundance of various prokaryotic taxa were found through univariate and multivariate analysis. Overall, the prokaryotic communities of hospital water were taxonomically diverse and dominated by biofilm forming, corrosion causing, and potentially pathogenic bacteria. The phyla Proteobacteria, Actinobacteriota, Bacteroidota, Planctomycetota, Firmicutes, and Cyanobacteria made up 96% of the relative abundance. The α-diversity measurements of prokaryotic communities showed no difference in taxa evenness and richness based on sampling sites (shower or hand basins), sampling phases (months), and presence or absence of Vermamoeba vermiformis. However, ß-diversity measurements showed significant clustering of prokaryotic communities based on sampling phases, with the greatest difference observed between the samples collected in phase 1 vs phase 2/3. Importantly, significant difference was observed in prokaryotic communities based on flow dynamics of the incoming water. The Pielou's evenness diversity index revealed a significant difference (Kruskal Wallis, p < 0.05) and showed higher species richness in low flow regime (< 13 minutes water flushing per week and ≤ 765 flushing events per six months). Similarly, Bray-Curtis dissimilarity index found significant differences (PERMANOVA, p < 0.05) in the prokaryotic communities of low vs medium/high flow regimes. Furthermore, linear discriminant analysis effect size showed that several biofilm forming (e.g., Pseudomonadales), corrosion causing (e.g., Desulfobacterales), extremely environmental stress resistant (e.g., Deinococcales), and potentially pathogenic (e.g., Pseudomonas) bacterial taxa were in higher amounts under low flow regime conditions. This study demonstrated that a hospital building water system consists of a complex microbiome that is shaped by incoming water quality and the building flow dynamics arising through usage.


Assuntos
Cianobactérias , Plâncton , RNA Ribossômico 16S/genética , Proteobactérias/genética , Cianobactérias/genética , Hospitais
5.
Front Cell Infect Microbiol ; 13: 1190631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351181

RESUMO

Hospital water systems are a significant source of Legionella, resulting in the potentially fatal Legionnaires' disease. One of the biggest challenges for Legionella management within these systems is that under unfavorable conditions Legionella transforms itself into a viable but non culturable (VBNC) state that cannot be detected using the standard methods. This study used a novel method (flow cytometry-cell sorting and qPCR [VFC+qPCR] assay) concurrently with the standard detection methods to examine the effect of temporary water stagnation, on Legionella spp. and microbial communities present in a hospital water system. Water samples were also analyzed for amoebae using culture and Vermamoeba vermiformis and Acanthamoeba specific qPCR. The water temperature, number and duration of water flow events for the hand basins and showers sampled was measured using the Enware Smart Flow® monitoring system. qPCR analysis demonstrated that 21.8% samples were positive for Legionella spp., 21% for L. pneumophila, 40.9% for V. vermiformis and 4.2% for Acanthamoeba. All samples that were Legionella spp. positive using qPCR (22%) were also positive for VBNC Legionella spp.; however, only 2.5% of samples were positive for culturable Legionella spp. 18.1% of the samples were positive for free-living amoebae (FLA) using culture. All samples positive for Legionella spp. were also positive for FLA. Samples with a high heterotrophic plate count (HPC ≥ 5 × 103 CFU/L) were also significantly associated with high concentrations of Legionella spp. DNA, VBNC Legionella spp./L. pneumophila (p < 0.01) and V. vermiformis (p < 0.05). Temporary water stagnation arising through intermittent usage (< 2 hours of usage per month) significantly (p < 0.01) increased the amount of Legionella spp. DNA, VBNC Legionella spp./L. pneumophila, and V. vermiformis; however, it did not significantly impact the HPC load. In contrast to stagnation, no relationship was observed between the microbes and water temperature. In conclusion, Legionella spp. (DNA and VBNC) was associated with V. vermiformis, heterotrophic bacteria, and stagnation occurring through intermittent usage. This is the first study to monitor VBNC Legionella spp. within a hospital water system. The high percentage of false negative Legionella spp. results provided by the culture method supports the use of either qPCR or VFC+qPCR to monitor Legionella spp. contamination within hospital water systems.


Assuntos
Acanthamoeba , Amoeba , Legionella pneumophila , Legionella , Legionella/genética , Amoeba/microbiologia , Água , Legionella pneumophila/genética , Acanthamoeba/microbiologia , DNA , Hospitais , Microbiologia da Água
6.
Front Microbiol ; 14: 1094877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793878

RESUMO

Legionella pneumophila is a waterborne pathogen and, as the causative agent of Legionnaires' disease, a significant public health concern. Exposure to environmental stresses, and disinfection treatments, promotes the formation of resistant and potentially infectious viable but non-culturable (VBNC) Legionella. The management of engineered water systems to prevent Legionnaires' disease is hindered by the presence of VBNC Legionella that cannot be detected using the standard culture (ISO11731:2017-05) and quantitative polymerase reaction (ISO/TS12869:2019) methods. This study describes a novel method to quantify VBNC Legionella from environmental water samples using a "viability based flow cytometry-cell sorting and qPCR" (VFC + qPCR) assay. This protocol was then validated by quantifying the VBNC Legionella genomic load from hospital water samples. The VBNC cells were unable to be cultured on Buffered Charcoal Yeast Extract (BCYE) agar; however, their viability was confirmed through their ATP activity and ability to infect amoeba hosts. Subsequently, an assessment of the ISO11731:2017-05 pre-treatment procedure demonstrated that acid or heat treatment cause underestimation of alive Legionella population. Our results showed that these pre-treatment procedures induce culturable cells to enter a VBNC state. This may explain the observed insensitivity and lack of reproducibility often observed with the Legionella culture method. This study represents the first time that flow cytometry-cell sorting in conjunction with a qPCR assay has been used as a rapid and direct method to quantify VBNC Legionella from environmental sources. This will significantly improve future research evaluating Legionella risk management approaches for the control of Legionnaires' disease.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36767114

RESUMO

Climate change is the greatest global health threat of the 21st century, with numerous direct and indirect human health consequences. Local governments play a critical role in communities' response to climate change, both through strategies to reduce emissions and adaption plans to respond to changing climate and extreme weather events. Australian local government environmental health officers (EHOs) have the relevant skills and expertise to inform and develop adaptation plans for health protection in the context of climate change. This study used an online survey followed by phone interviews of local government management to determine the extent to which EHOs are involved in adaptation planning in health protection climate change plans. Questions were also asked to determine whether local councils are aware of EHOs' capability to contribute and to gauge the willingness of management to provide EHOs with the workload capacity to do so. The findings demonstrated that although climate adaptation and mitigation planning is occurring in local government, it is not including or considering the public health impacts on the community. Primarily, it was found that this oversight was due to a lack of awareness of the health impacts of climate change outside of a disaster or emergency scenario. Currently, EHOs are an untapped source of knowledge and skills that can contribute to climate change adaption planning. To support this, a framework of local environmental health practice was developed to assist the reconceptualization of the scope of practice required for the planning and response to climate change.


Assuntos
Mudança Climática , Desastres , Humanos , Austrália , Governo Local , Saúde Pública
8.
Front Microbiol ; 14: 1309032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38414711

RESUMO

Vibrio spp. are opportunistic human and animal pathogens found ubiquitously in marine environments. Globally, there is a predicted rise in the prevalence of Vibrio spp. due to increasing ocean temperatures, which carries significant implications for public health and the seafood industry. Consequently, there is an urgent need for enhanced strategies to control Vibrio spp. and prevent contamination, particularly in aquaculture and seafood processing facilities. Presently, these industries employ various disinfectants, including benzalkonium chloride (BAC), as part of their management strategies. While higher concentrations of BAC may be effective against these pathogens, inadequate rinsing post-disinfection could result in residual concentrations of BAC in the surrounding environment. This study aimed to investigate the adaptation and survival of Vibrio spp. exposed to varying concentrations of BAC residues. Results revealed that Vibrio bacteria, when exposed, exhibited a phenotypic adaptation characterized by an increase in biofilm biomass. Importantly, this effect was found to be strain-specific rather than species-specific. Exposure to BAC residues induced physiological changes in Vibrio biofilms, leading to an increase in the number of injured and alive cells within the biofilm. The exact nature of the "injured" bacteria remains unclear, but it is postulated that BAC might heighten the risk of viable but non-culturable (VBNC) bacteria development. These VBNC bacteria pose a significant threat, especially since they cannot be detected using the standard culture-based methods commonly employed for microbiological risk assessment in aquaculture and seafood industries. The undetected presence of VBNC bacteria could result in recurrent contamination events and subsequent disease outbreaks. This study provides evidence regarding the role of c-di-GMP signaling pathways in Vibrio adaptation mechanisms and suggests that c-di-GMP mediated repression is a potential avenue for further research. The findings underscore that the misuse and overuse of BAC may increase the risk of biofilm development and bacterial survival within the seafood processing chain.

9.
Water Res ; 226: 119238, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270142

RESUMO

Free-living amoebae are ubiquitous in the environment and cause both opportunistic and non-opportunistic infections in humans. Some genera of amoebae are natural reservoirs of opportunistic plumbing pathogens, such as Legionella pneumophila. In this study, the presence of free-living amoebae and Legionella was investigated in 140 water and biofilm samples collected from Australian domestic (n = 68) and hospital water systems (n = 72). Each sample was screened in parallel using molecular and culture-based methods. Direct quantitative polymerase chain reaction (qPCR) assays showed that 41% samples were positive for Legionella, 33% for L. pneumophila, 11% for Acanthamoeba, and 55% for Vermamoeba vermiformis gene markers. Only 7% of samples contained culturable L. pneumophila serogroup (sg)1, L. pneumophila sg2-14, and non-pneumophila Legionella. In total, 69% of samples were positive for free-living amoebae using any method. Standard culturing found that 41% of the samples were positive for amoeba (either Acanthamoeba, Allovahlkampfia, Stenamoeba, or V. vermiformis). V. vermiformis showed the highest overall frequency of occurrence. Acanthamoeba and V. vermiformis isolates demonstrated high thermotolerance and osmotolerance and strong broad spectrum bacteriogenic activity against Gram-negative and Gram-positive bacteria. Importantly, all Legionella positive samples were also positive for amoeba, and this co-occurrence was statistically significant (p < 0.05). According to qPCR and fluorescence in situ hybridization, V. vermiformis and Allovahlkampfia harboured intracellular L. pneumophila. To our knowledge, this is the first time Allovahlkampfia and Stenamoeba have been demonstrated as hosts of L. pneumophila in potable water. These results demonstrate the importance of amoebae in engineered water systems, both as a pathogen and as a reservoir of Legionella. The high frequency of gymnamoebae detected in this study from Australian engineered water systems identifies an issue of significant public health concern. Future water management protocols should incorporate treatments strategies to control amoebae to reduce the risk to end users.


Assuntos
Acanthamoeba , Amoeba , Água Potável , Legionella pneumophila , Legionella , Humanos , Legionella pneumophila/genética , Microbiologia da Água , Hibridização in Situ Fluorescente , Austrália , Legionella/genética , Água Potável/microbiologia , Acanthamoeba/genética , Hospitais
10.
Curr Opin Infect Dis ; 35(4): 339-345, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849524

RESUMO

PURPOSE OF REVIEW: Drinking water is considered one of the most overlooked and underestimated sources of healthcare-associated infections (HAIs). Recently, the prevention and control of opportunistic premise plumbing pathogens (OPPPs) in healthcare water systems has been receiving increasing attention in infection control guidelines. However, these fail to address colonization of pathogens that do not originate from source water. Subsequently, this review explores the role of water and premise plumbing biofilm in HAIs. The potential mechanisms of contamination and transmission of antimicrobial-resistant (AMR) pathogens originating both from supply water and human microbiota are discussed. RECENT FINDINGS: OPPPs, such as Legionella pneumophila, Pseudomonas aeruginosa and Mycobacterium avium have been described as native to the plumbing environment. However, other pathogens, not found in the source water, have been found to proliferate in biofilms formed on outlets devices and cause HAI outbreaks. SUMMARY: Biofilms formed on outlet devices, such as tap faucets, showers and drains provide an ideal niche for the dissemination of antimicrobial resistance. Thus, comprehensive surveillance guidelines are required to understand the role that drinking water and water-related devices play in the transmission of AMR HAIs and to improve infection control guidelines.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Água Potável , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/prevenção & controle , Atenção à Saúde , Água Potável/microbiologia , Hospitais , Humanos , Microbiologia da Água , Abastecimento de Água
11.
Microorganisms ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456734

RESUMO

This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.

12.
Sci Total Environ ; 826: 154184, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231527

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been identified as emerging contaminants of public health concern. With PFAS now detected globally in a wide range of environments, there is an urgent need for effective remedial treatment solutions at the field scale. Phytoremediation presents a potential remediation strategy for PFAS that would allow efficient and cost-effective remediation at large scales. This study examined the potential for the Australian native wetland plant Juncus sarophorus to tolerate, take up, and accumulate PFOS, PFOA and PFHxS. A 190-day glasshouse experiment was conducted, in which 0, 10 and 100 µg/L each of PFOS, PFOA and PFHxS were used to irrigate J. sarophorus in potted soil. The results suggest that J. sarophorus has a high tolerance to PFAS and is effective at accumulating and transferring PFHxS and PFOA from soils to above ground biomass. Together with its high growth rate, J. sarophorus appears to be, in principle, a suitable candidate for phytoextraction of short-chained PFAS compounds. It is, however, less efficient at uptake of PFOS, owing to the long chain-lengths of this compound and PFOSs' ability to sorb effectively to soils. The total accumulated PFAS mass at the end of the experiment was ~2000 µg/kg biota(wet weight) and ~170 µg/kg biota(wet weight) for soils irrigated with 100 µg/L and 10 µg/L for each PFAS compound, translating into overall PFAS removal rates of 11% and 9%.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Austrália , Fluorocarbonos/análise , Solo , Poluentes Químicos da Água/análise , Áreas Alagadas
13.
Artigo em Inglês | MEDLINE | ID: mdl-35055611

RESUMO

 Food safety inspections are a key health protection measure applied by governments to prevent foodborne illness, yet they remain the subject of sustained criticism. These criticisms include inconsistency and inadequacy of methods applied to inspection, and ineffectiveness in preventing foodborne illness. Investigating the validity of these criticisms represent important areas for further research. However, a defined construct around the meanings society attributes to food safety inspection must first be established. Through critical examination of available literature, this review identified meanings attributed to food safety inspection and explicates some of the key elements that compose food safety inspection as a social construct. A total of 18 meanings were found to be attributed to food safety inspection. Variation in meanings were found between consumers, food business associates and food safety inspectors. For some, inspection meant a source of assurance, for others a threat to fairness, while most view inspection as a product of resources and inspector training. The meanings were then examined in light of common criticisms directed at food safety inspection, to expound their influence in how food safety inspection is realized, shaped, and rationalized. This review highlights the influence of sociological factors in defining food safety inspection. .


Assuntos
Inspeção de Alimentos , Doenças Transmitidas por Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos
14.
Zoonoses Public Health ; 69(1): 13-22, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34482641

RESUMO

Worldwide, foodborne illness is a significant public health issue in both developed and developing countries. Salmonellosis, campylobacteriosis and shigellosis are common foodborne gastrointestinal illnesses caused by the bacteria Salmonella spp., Campylobacter spp. and Shigella spp. respectively. These zoonotic diseases are frequently linked to eggs and poultry products. The aim of this study was to investigate the presence of these pathogens in Australian backyard poultry flocks and to determine risk factors for these pathogens. Poultry faeces samples were collected from 82 backyards and screened for Salmonella spp., Campylobacter spp. and Shigella spp. using qPCR. A questionnaire was administered to the backyard poultry owners to assess their knowledge regarding management of poultry and eggs and to identify potential risk factors that may contribute to the presence of zoonotic pathogens in the flocks. One composite faecal sample was collected from each backyard (82 samples). Composite sampling here means taking one or more grab samples from a backyard to make up approximately 10 grams. Four per cent of samples, that is 4% backyards tested, were positive for Salmonella spp., 10% were positive for Campylobacter spp. and none were positive for Shigella spp. A higher infection rate was seen in multi-aged flocks (24%) compared with the single-aged flocks (3%). The survey found that many participants were engaging in risky food safety behaviours with 46% of participants responding that they washed their eggs with running water or still water instead of wiping the dirt off with a damp cloth to clean the eggs and 19% stored their eggs at room temperature. This study demonstrated that backyard poultry may pose a potential risk for salmonellosis and campylobacteriosis. Additionally, Australian public health and food safety regulations should be modified and effectively implemented to address the risks associated with backyard poultry husbandry.


Assuntos
Infecções por Campylobacter , Campylobacter , Doenças das Aves Domésticas , Shigella , Criação de Animais Domésticos , Animais , Austrália/epidemiologia , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Galinhas/microbiologia , Humanos , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Fatores de Risco , Salmonella
16.
Artigo em Inglês | MEDLINE | ID: mdl-34501507

RESUMO

To better protect public health from third-hand exposure to methamphetamine, it is important to understand the techniques and current practices used within the methamphetamine testing and decontamination industry in Australia. A survey was conducted focusing on business owners that advertised testing and/or remediation services online. They were also invited to participate in a follow-up phone interview upon completion. The survey demonstrated that testing and decontamination methods were highly varied, which was expected for an industry with no regulation. Most companies offered methamphetamine testing and remediation which could be a conflict of interest. Participants also shared personal experiences, including the conduct of other industry members, demonstrating both poor practice and/or the competitive nature of the business. Participating business owners were following Australian guidelines to the best of their ability, and many are advocates for regulation to be implemented within the industry. This would address the inconsistencies between companies and establish trust for industry members and the public. It would also provide significant public health protection, which is currently lacking. A more consistent approach to the testing and remediation of methamphetamine contamination, aided by regulation, would address the significant risk to public health caused by third-hand exposure to methamphetamine.


Assuntos
Metanfetamina , Austrália , Descontaminação , Humanos , Indústrias , Saúde Pública
18.
Pathogens ; 10(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671684

RESUMO

Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33546334

RESUMO

BACKGROUND: The New Environmental Health is an approach to environmental health adopted in 1999. The new approach was in response to emerging health risks from the pressures that development placed on the environment, climate change, and increasing vulnerabilities of local communities. The new approach heralded a change in perception and roles within environmental health. Twenty years on, it seems these changes have not been embraced by local government. METHODS: To determine whether this was the case, we assessed the use of the term "environmental health" in local government annual reports, and where environmental health functions sit within the organisational structure of councils. RESULTS: We found that the New Environmental Health has not been adopted by councils and environmental health relates solely to the delivery of statutory services and legislative compliance. CONCLUSIONS: One result of this is local environmental health practitioners, who constitute the major health protection capability of councils, are defined by the narrow legislative obligations imposed on councils. This represents a significant lost opportunity as public health is not protected in the way that was envisaged with the adoption of the New Environmental Health.


Assuntos
Saúde Ambiental , Governo Local , Austrália , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA