Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(3): eadd8915, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662857

RESUMO

Establishing that climate exerts an important general influence on topography in tectonically active settings has proven an elusive goal. Here, we show that climates ranging from arid to humid consistently influence fluvial erosional efficiency and thus topography, and this effect is captured by a simple metric that combines channel steepness and mean annual rainfall, ksnQ. Accounting for spatial rainfall variability additionally increases the sensitivity of channel steepness to lithologic and tectonic controls on topography, enhancing predictions of erosion and rock uplift rates, and supports the common assumption of a reference concavity near 0.5. In contrast, the standard channel steepness metric, ksn, intrinsically assumes that climate is uniform. Consequently, its use where rainfall varies spatially undermines efforts to distinguish climate from tectonic and lithologic effects, can bias reference concavity estimates, and may ultimately lead to false impressions about rock uplift patterns and other environmental influences. Capturing climate is therefore a precondition to understanding mountain landscape evolution.


Assuntos
Clima , Geografia
2.
Nat Commun ; 12(1): 7231, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903729

RESUMO

The establishment of continental-scale drainage systems on Earth is largely controlled by topography related to plate boundary deformation and buoyant mantle. Drainage patterns of the great rivers in Asia are thought to be highly dynamic during the Cenozoic collision of India and Eurasia, but the drainage pattern and landscape evolution prior to the development of high topography in eastern Tibet remain largely unknown. Here we report the results of petro-stratigraphy, heavy-mineral analysis, and detrital zircon U-Pb dating from late Cretaceous-early Palaeogene sedimentary basin strata along the present-day eastern margin of the Tibetan Plateau. Similarities in the provenance signatures among basins indicate that a continental-scale fluvial system once drained southward into the Neo-Tethyan Ocean. These results challenge existing models of drainage networks that flowed toward the East Asian marginal seas and require revisions to inference of palaeo-topography during the Late Cretaceous. The presence of a continent-scale river may have provided a stable long-term base level which, in turn, facilitated the development of an extensive low-relief landscape that is preserved atop interfluves above the deeply incised canyons of eastern Tibet.

3.
Science ; 346(6212): 918-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25414290
4.
Proc Natl Acad Sci U S A ; 99(4): 1780-3, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-16578863

RESUMO

Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA