Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(7): e0254734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270597

RESUMO

As the COVID-19 pandemic drags into its second year, there is hope on the horizon, in the form of SARS-CoV-2 vaccines which promise disease suppression and a return to pre-pandemic normalcy. In this study we critically examine the basis for that hope, using an epidemiological modeling framework to establish the link between vaccine characteristics and effectiveness in bringing an end to this unprecedented public health crisis. Our findings suggest that a return to pre-pandemic social and economic conditions without fully suppressing SARS-CoV-2 will lead to extensive viral spread, resulting in a high disease burden even in the presence of vaccines that reduce risk of infection and mortality. Our modeling points to the feasibility of complete SARS-CoV-2 suppression with high population-level compliance and vaccines that are highly effective at reducing SARS-CoV-2 infection. Notably, vaccine-mediated reduction of transmission is critical for viral suppression, and in order for partially-effective vaccines to play a positive role in SARS-CoV-2 suppression, complementary biomedical interventions and public health measures must be deployed simultaneously.


Assuntos
COVID-19/prevenção & controle , Vacinação/estatística & dados numéricos , Fatores Etários , Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/transmissão , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/normas , Estudos de Viabilidade , Humanos , Imunidade Coletiva , Imunogenicidade da Vacina , Modelos Estatísticos , Mortalidade/tendências , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Vacinação/normas
2.
BMC Public Health ; 21(1): 832, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931055

RESUMO

BACKGROUND: The word 'pandemic' conjures dystopian images of bodies stacked in the streets and societies on the brink of collapse. Despite this frightening picture, denialism and noncompliance with public health measures are common in the historical record, for example during the 1918 Influenza pandemic or the 2015 Ebola epidemic. The unique characteristics of SARS-CoV-2-its high basic reproduction number (R0), time-limited natural immunity and considerable potential for asymptomatic spread-exacerbate the public health repercussions of noncompliance with interventions (such as vaccines and masks) to limit disease transmission. Our work explores the rationality and impact of noncompliance with measures aimed at limiting the spread of SARS-CoV-2. METHODS: In this work, we used game theory to explore when noncompliance confers a perceived benefit to individuals. We then used epidemiological modeling to predict the impact of noncompliance on control of SARS-CoV-2, demonstrating that the presence of a noncompliant subpopulation prevents suppression of disease spread. RESULTS: Our modeling demonstrates that noncompliance is a Nash equilibrium under a broad set of conditions and that the existence of a noncompliant population can result in extensive endemic disease in the long-term after a return to pre-pandemic social and economic activity. Endemic disease poses a threat for both compliant and noncompliant individuals; all community members are protected if complete suppression is achieved, which is only possible with a high degree of compliance. For interventions that are highly effective at preventing disease spread, however, the consequences of noncompliance are borne disproportionately by noncompliant individuals. CONCLUSIONS: In sum, our work demonstrates the limits of free-market approaches to compliance with disease control measures during a pandemic. The act of noncompliance with disease intervention measures creates a negative externality, rendering suppression of SARS-CoV-2 spread ineffective. Our work underscores the importance of developing effective strategies for prophylaxis through public health measures aimed at complete suppression and the need to focus on compliance at a population level.


Assuntos
COVID-19 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Máscaras , Pandemias , SARS-CoV-2
3.
PLoS One ; 16(3): e0248509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765026

RESUMO

As the world grapples with the ongoing COVID-19 pandemic, a particularly thorny set of questions surrounds the reopening of primary and secondary (K-12) schools. The benefits of in-person learning are numerous, in terms of education quality, mental health, emotional well-being, equity and access to food and shelter. Early reports suggested that children might have reduced susceptibility to COVID-19, and children have been shown to experience fewer complications than older adults. Over the past few months, our understanding of COVID-19 has been further shaped by emerging data, and it is now understood that children are as susceptible to infection as adults and have a similar viral load during infection, even if asymptomatic. Based on this updated understanding of the disease, we have used epidemiological modeling to explore the feasibility and consequences of school reopening in the face of differing rates of COVID-19 prevalence and transmission. We focused our analysis on the United States, but the results are applicable to other countries as well. We demonstrate the potential for a large discrepancy between detected cases and true infections in schools due to the combination of high asymptomatic rates in children coupled with delays in seeking testing and receiving results from diagnostic tests. Our findings indicate that, regardless of the initial prevalence of the disease, and in the absence of robust surveillance testing and contact-tracing, most schools in the United States can expect to remain open for 20-60 days without the emergence of sizeable disease clusters. At this point, even if schools choose to close after outbreaks occur, COVID-19 cases will be seeded from these school clusters and amplified into the community. Thus, our findings suggest that the debate between the risks to student safety and benefits of in-person learning frames a false dual choice. Reopening schools without surveillance testing and contact tracing measures in place will lead to spread within the schools and within the communities that eventually forces a return to remote learning and leaves a trail of infection in its wake.


Assuntos
COVID-19/patologia , Modelos Teóricos , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19 , Busca de Comunicante , Humanos , Pandemias , Prevalência , SARS-CoV-2/isolamento & purificação , Instituições Acadêmicas , Estados Unidos/epidemiologia
4.
PLoS Comput Biol ; 12(11): e1005188, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27851764

RESUMO

The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFß treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bioensaio/métodos , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Proteínas de Neoplasias/metabolismo , Células da Side Population/citologia , Células da Side Population/metabolismo , Cinética , Taxa de Depuração Metabólica , Modelos Biológicos , Células da Side Population/classificação
5.
Biomaterials ; 76: 66-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26519649

RESUMO

Matrix metalloproteinases (MMPs) remodel the extracellular matrix (ECM) to facilitate epithelial-to-mesenchymal transitions (EMTs) and promote cell specification during embryonic development. In this study, we hypothesized that introducing degradable ECM-based biomaterials to pluripotent stem cell (PSC) aggregates would modulate endogenous proteolytic activity and consequently enhance the differentiation and morphogenesis within 3D PSC aggregates. Gelatin methacrylate (GMA) microparticles (MPs) of low (∼20%) or high (∼90%) cross-linking densities were incorporated into mouse embryonic stem cell (ESC) aggregates, and the effects on MMP activity and cell differentiation were examined with or without MMP inhibition. ESC aggregates containing GMA MPs expressed significantly higher levels of total MMP and MMP-2 than aggregates without MPs. GMA MP incorporation increased expression of EMT markers and enhanced mesenchymal morphogenesis of PSC aggregates. MMP inhibition completely abrogated these effects, and GMA MP-induced MMP activation within ESC aggregates was partially reduced by pSMAD 1/5/8 inhibition. These results suggest that GMA particles activate MMPs by protease-substrate interactions to promote EMT and mesenchymal morphogenesis of ESC aggregates in an MMP-dependent manner. We speculate that controlling protease activity via the introduction of ECM-based materials may offer a novel route to engineer the ECM microenvironment to modulate stem cell differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Gelatina/farmacologia , Metaloproteinases da Matriz/metabolismo , Metacrilatos/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Células Cultivadas , Transição Epitelial-Mesenquimal/genética , Gelatina/química , Expressão Gênica , Metacrilatos/química , Camundongos , Morfogênese
6.
Sci Rep ; 5: 10777, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126518

RESUMO

CRISPR/Cas9 systems have been used in a wide variety of biological studies; however, the large size of CRISPR/Cas9 presents challenges in packaging it within adeno-associated viruses (AAVs) for clinical applications. We identified a two-cassette system expressing pieces of the S. pyogenes Cas9 (SpCas9) protein which splice together in cellula to form a functional protein capable of site-specific DNA cleavage. With specific CRISPR guide strands, we demonstrated the efficacy of this system in cleaving the HBB and CCR5 genes in human HEK-293T cells as a single Cas9 and as a pair of Cas9 nickases. The trans-spliced SpCas9 (tsSpCas9) displayed ~35% of the nuclease activity compared with the wild-type SpCas9 (wtSpCas9) at standard transfection doses, but had substantially decreased activity at lower dosing levels. The greatly reduced open reading frame length of the tsSpCas9 relative to wtSpCas9 potentially allows for more complex and longer genetic elements to be packaged into an AAV vector including tissue-specific promoters, multiplexed guide RNA expression, and effector domain fusions to SpCas9. For unknown reasons, the tsSpCas9 system did not work in all cell types tested. The use of protein trans-splicing may help facilitate exciting new avenues of research and therapeutic applications through AAV-based delivery of CRISPR/Cas9 systems.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Vetores Genéticos/metabolismo , Receptores CCR5/genética , Trans-Splicing/genética , Globinas beta/genética , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Proteínas Associadas a CRISPR/química , Linhagem Celular , Endonucleases/metabolismo , Humanos , Dados de Sequência Molecular , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA , Streptococcus pyogenes/metabolismo
7.
Integr Biol (Camb) ; 7(7): 825-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095427

RESUMO

Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes.


Assuntos
Diferenciação Celular/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Análise Multivariada , Comunicação Parácrina/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Simulação por Computador , Humanos , Células-Tronco Pluripotentes/citologia
8.
PLoS Comput Biol ; 9(3): e1002952, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516345

RESUMO

Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into cells from all germ lineages, making them a potentially robust cell source for regenerative medicine therapies, but difficulties in predicting and controlling ESC differentiation currently limit the development of therapies and applications from such cells. A common approach to induce the differentiation of ESCs in vitro is via the formation of multicellular aggregates known as embryoid bodies (EBs), yet cell fate specification within EBs is generally considered an ill-defined and poorly controlled process. Thus, the objective of this study was to use rules-based cellular modeling to provide insight into which processes influence initial cell fate transitions in 3-dimensional microenvironments. Mouse embryonic stem cells (D3 cell line) were differentiated to examine the temporal and spatial patterns associated with loss of pluripotency as measured through Oct4 expression. Global properties of the multicellular aggregates were accurately recapitulated by a physics-based aggregation simulation when compared to experimentally measured physical parameters of EBs. Oct4 expression patterns were analyzed by confocal microscopy over time and compared to simulated trajectories of EB patterns. The simulations demonstrated that loss of Oct4 can be modeled as a binary process, and that associated patterns can be explained by a set of simple rules that combine baseline stochasticity with intercellular communication. Competing influences between Oct4+ and Oct4- neighbors result in the observed patterns of pluripotency loss within EBs, establishing the utility of rules-based modeling for hypothesis generation of underlying ESC differentiation processes. Importantly, the results indicate that the rules dominate the emergence of patterns independent of EB structure, size, or cell division. In combination with strategies to engineer cellular microenvironments, this type of modeling approach is a powerful tool to predict stem cell behavior under a number of culture conditions that emulate characteristics of 3D stem cell niches.


Assuntos
Microambiente Celular/fisiologia , Modelos Biológicos , Células-Tronco Pluripotentes/fisiologia , Animais , Linhagem Celular , Biologia Computacional/métodos , Simulação por Computador , Corpos Embrioides/citologia , Corpos Embrioides/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Transdução de Sinais
9.
West J Emerg Med ; 13(5): 401-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23359832

RESUMO

INTRODUCTION: In women with suspected urinary tract infection (UTI), a non-contaminated voided specimen is considered important for valid urinalysis and culture results. We assess whether midstream parted-labia catch (MSPC) instructions were provided by nurses, understood, and performed correctly, according to the patient. METHODS: We conducted a cross-sectional survey of English- and Spanish-speaking female patients submitting voided urine samples for urinalysis for suspected UTI. The survey was conducted in a public teaching hospital emergency department (ED) from June to December 2010, beginning 2 months after development and dissemination of a nursing MSPC instructions protocol. Research assistants administered the survey within 2 hours of urine collection. Nurses were unaware of the study purpose. RESULTS: Of 129 patients approached, 74 (57%) consented and were included in the analysis. Median age was 35; 44% were Latino. Regarding instructions from nurses, patients reported the following: 45 (61%; 95% CI 50-72%) received any instructions; of whom 37 (82%; 95% CI 71-93%) understood them completely. Sixteen (36%; 95% CI 22-51%) were instructed to collect midstream; and 7 (16%; 95% CI 6-29%) to part the labia. Regardless of receiving or understanding instructions, 33 (45%; 95% CI 33-57%) reported actually collecting midstream, and 11 (15%, 95% CI 8-25%) parting the labia. CONCLUSION: In this ED, instructions for MSPC urine collection frequently were not given, despite a nursing protocol, and patients rarely performed the essential steps. An evidence-based approach to urine testing in the ED that considers urine collection technique, is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA