RESUMO
Advanced maternal age during pregnancy is associated with increased risk of vaginal tearing during delivery and maladaptive postpartum healing. Although the underlying mechanisms of age-related vaginal injuries are not fully elucidated, changes in vaginal microstructure may contribute. Smooth muscle cells promote the contractile nature of the vagina and contribute to pelvic floor stability. While menopause is associated with decreased vaginal smooth muscle content, whether contractile changes occur before the onset of menopause remains unknown. Therefore, the first objective of this study was to quantify the active mechanical behavior of the murine vagina with age. Further, aging is associated with decreased vaginal elastin content. As such, the second objective was to determine if elastic fiber disruption alters vaginal contractility. Vaginal samples from mice aged 2-14 months were used in maximum contractility experiments and biaxial extension-inflation protocols. To evaluate the role of elastic fibers with age, half of the vaginal samples were randomly allocated to enzymatic elastic fiber disruption. Contractile potential decreased and vaginal material stiffness increased with age. These age-related changes in smooth muscle function may be due, in part, to changes in microstructural composition or contractile gene expression. Furthermore, elastic fiber disruption had a diminished effect on smooth muscle contractility in older mice. This suggests a decreased functional role of elastic fibers with age. Quantifying the age-dependent mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties provides a first step towards better understanding how age-related changes in vaginal structure may contribute to tissue integrity and healing. STATEMENT OF SIGNIFICANCE: Advanced maternal age at the time of pregnancy is linked to increased risks of vaginal tearing during delivery, postpartum hemorrhaging, and the development of pelvic floor disorders. While the underlying causes of increased vaginal injuries with age and associated pathologies remain unclear, changes in vaginal microstructure, such as elastic fibers and smooth muscle cells, may contribute. Menopause is associated with fragmented elastic fibers and decreased smooth muscle content; however, how reproductive aging affects changes in the vaginal composition and the mechanical properties remains unknown. Quantifying the mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties with age will advance understanding of the potential structural causes of age-related changes to tissue integrity and healing.
Assuntos
Tecido Elástico , Vagina , Gravidez , Feminino , Camundongos , Animais , Tecido Elástico/metabolismo , Músculo Liso , Miócitos de Músculo Liso , Contração Muscular/fisiologiaRESUMO
Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2-14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.
Assuntos
Pelve , Vagina , Envelhecimento , Animais , Anisotropia , Feminino , Camundongos , Elastase Pancreática , Gravidez , Estresse MecânicoRESUMO
Background: Pelvic organ prolapse (POP) affects a significant portion of the female population, impacting quality of life and often requiring intervention. The exact cause of prolapse is unknown. Methods: We review some of the current research that focuses on defining the elements involved in POP, with a focus on in vitro testing. Results: Treatment for POP, ranging from physical therapy or pessary use to more invasive surgery, has varying success rates. This variation is, in part, because the pathophysiology of pelvic floor support-and thus dysfunction-is incompletely understood, particularly regarding the structural components and biomechanical properties of tissue. However, researchers are working to identify and quantify the structural and functional dysfunction that may lead to the development of this condition. Conclusion: Given the limited understanding of prolapse development, more research is needed to quantify the microstructure of the pelvic organs and pelvic support structures, with and without prolapse. Identifying biomechanical properties in multiaxial configurations will improve our understanding of pelvic tissue support, as well as our ability to establish predictive models and improve clinical treatment strategies.
RESUMO
The female reproductive organs, specifically the vagina and cervix, are composed of various cellular components and a unique extracellular matrix (ECM). Smooth muscle cells exhibit a contractile function within the vaginal and cervical walls. Depending on the biochemical environment and the mechanical distension of the organ walls, the smooth muscle cells alter the contractile conditions. The contribution of the smooth muscle cells under baseline physiological conditions is classified as a basal tone. More specifically, a basal tone is the baseline partial constriction of smooth muscle cells in the absence of hormonal and neural stimulation. Furthermore, the ECM provides structural support for the organ walls and functions as a reservoir for biochemical cues. These biochemical cues are vital to various organ functions, such as inciting growth and maintaining homeostasis. The ECM of each organ is composed primarily of collagen fibers (mostly collagen types I, III, and V), elastic fibers, and glycosaminoglycans/proteoglycans. The composition and organization of the ECM dictate the mechanical properties of each organ. A change in ECM composition may lead to the development of reproductive pathologies, such as pelvic organ prolapse or premature cervical remodeling. Furthermore, changes in ECM microstructure and stiffness may alter smooth muscle cell activity and phenotype, thus resulting in the loss of the contractile force. In this work, the reported protocols are used to assess the basal tone and passive mechanical properties of the nonpregnant murine vagina and cervix at 4-6 months of age in estrus. The organs were mounted in a commercially available pressure myograph and both pressure-diameter and force-length tests were performed. Sample data and data analysis techniques for the mechanical characterization of the reproductive organs are included. Such information may be useful for constructing mathematical models and rationally designing therapeutic interventions for women's health pathologies.