Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Commun ; 14(1): 8168, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071224

RESUMO

We present a process for solid phase peptide synthesis (SPPS) that completely eliminates all solvent intensive washing steps during each amino acid addition cycle. A key breakthrough is the removal of a volatile Fmoc deprotection base through bulk evaporation at elevated temperature while preventing condensation on the vessel surfaces with a directed headspace gas flushing. This process was demonstrated at both research and production scales without any impact on product quality and when applied to a variety of challenging sequences (up to 89 amino acids in length). The overall result is an extremely fast, high purity, scalable process with a massive waste reduction (up to 95%) while only requiring 10-15% of the standard amount of base used. This transformation of SPPS represents a step-change in peptide manufacturing process efficiency, and should encourage expanded access to peptide-based therapeutics.


Assuntos
Peptídeos , Técnicas de Síntese em Fase Sólida , Peptídeos/química , Aminoácidos/química
2.
Chem Sci ; 12(46): 15347-15352, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34976355

RESUMO

A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt(ii)-Pt(ii) dimer to the corresponding Pt(ii)-Pt(iii)-H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt(ii)-Pt(ii) dimer in a particularly reactive conformation that promotes hydrogen formation.

3.
Inorg Chem ; 57(5): 2865-2875, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446925

RESUMO

The synthesis of two new heteroleptic Cu(I) photosensitizers (PS), [Cu(Xantphos)(NN)]PF6 (NN = biq = 2,2'-biquinoline, dmebiq = 2,2'-biquinoline-4,4'-dimethyl ester; Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene), along with the associated structural, photophysical, and electrochemical properties, are described. The biquinoline diimine ligand extends the PS light absorbing properties into the visible with a maximum absorption at 455 and 505 nm for NN = biq and dmebiq, respectively, in CH2Cl2 solvent. Following photoexcitation, both Cu(I) PS are emissive at low energy, albeit displaying stark differences in their excited state lifetimes (τMLCT = 410 ± 5 (biq) and 44 ± 4 ns (dmebiq)). Cyclic voltammetry indicates a Cu-based HOMO and NN-based LUMO for both complexes, whereby the methyl ester substituents stabilize the LUMO within [Cu(Xantphos)(dmebiq)]+ by ∼0.37 V compared to the unsubstituted analogue. When combined with H2O, N,N-dimethylaniline (DMA) electron donor, and cis-[Rh(NN)2Cl2]PF6 (NN = Me2bpy = 4,4'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, dmebpy = 2,2'-bipyridine-4,4'-dimethyl ester) water reduction catalysts (WRC), photocatalytic H2 evolution is only observed using the [Cu(Xantphos)(biq)]+ PS. Furthermore, the choice of cis-[Rh(NN)2Cl2]+ WRC strongly affects the catalytic activity with turnover numbers (TONRh = mol H2 per mol Rh catalyst) of 25 ± 3, 22 ± 1, and 43 ± 3 for NN = Me2bpy, bpy, and dmebpy, respectively. This work illustrates how ligand modification to carefully tune the PS light absorbing, excited state, and redox-active properties, along with the WRC redox potentials, can have a profound impact on the photoinduced intermolecular electron transfer between components and the subsequent catalytic activity.

4.
J Am Chem Soc ; 140(1): 229-234, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29260869

RESUMO

The new Ru(II)-anthraquinone complex [Ru(bpy)2(qdpq)](PF6)2 (Ru-qdpq; bpy = 2,2'-bipyridine; qdpq = 2,3-di(2-pyridyl)naphtho[2,3-f]quinoxaline-7,12-quinone) possesses a strong 1MLCT Ru → qdpq absorption with a maximum at 546 nm that tails into the near-IR and is significantly red-shifted relative to that of the related complex [Ru(bpy)2(qdppz)](PF6)2 (Ru-qdppz; qdppz = naphtho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione), with λmax = 450 nm. Ru-qdppz possesses electronically isolated proximal and distal qdppz-based excited states; the former is initially generated and decays to the latter, which repopulates the ground state with τ = 362 ps. In contrast, excitation of Ru-qdpq results in the population of a relatively long-lived (τ = 19 ns) Ru(dπ) → qdpq(π*) 3MLCT excited state where the promoted electron is delocalized throughout the qdpq ligand. Ultrafast spectroscopy, used together with steady-state absorption, electrochemistry, and DFT calculations, indicates that the unique coordination modes of the qdpq and qdppz ligands impart substantially different electronic communication throughout the quinone-containing ligand, affecting the excited state and electron transfer properties of these molecules. These observations create a pathway to synthesize complexes with red-shifted absorptions that possess long-lived, redox-active excited states that are useful for various applications, including solar energy conversion and photochemotherapy.

5.
J Am Chem Soc ; 139(41): 14724-14732, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28976191

RESUMO

The new heteroleptic paddlewheel complexes cis-[Rh2(µ-form)2(µ-np)2][BF4]2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh2(µ-form)2(µ-npCOO)2 (npCOO- = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λmax = 300 nm, ε = 20 300 M-1 cm-1) and visible regions (λmax = 640 nm ε = 3500 M-1 cm-1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were used to characterize the identity and dynamics of the excited states, where singlet and triplet Rh2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO- complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E(3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ∼800 nm.

6.
Chem Commun (Camb) ; 52(82): 12175-12178, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27722523

RESUMO

Two formamidinate bridged dirhodium(ii,ii) complexes with chelating diimine ligands L, [Rh2(µ-DTolF)2(L)2]2+, were shown to electrocatalytically reduce CO2 in the presence of H2O. Analysis of the reaction mixture and headspace following bulk electrolysis revealed H2 and HCOOH as the major products. The variation in relative product formation is discussed.

7.
Chemistry ; 22(42): 14870-14880, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27459316

RESUMO

A series of RuII polypyridyl complexes of the structural design [RuII (R-tpy)(NN)(CH3 CN)]2+ (R-tpy=2,2':6',2''-terpyridine (R=H) or 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine (R=tBu); NN=2,2'-bipyridine with methyl substituents in various positions) have been synthesized and analyzed for their ability to function as electrocatalysts for the reduction of CO2 to CO. Detailed electrochemical analyses establish how substitutions at different ring positions of the bipyridine and terpyridine ligands can have profound electronic and, even more importantly, steric effects that determine the complexes' reactivities. Whereas electron-donating groups para to the heteroatoms exhibit the expected electronic effect, with an increase in turnover frequencies at increased overpotential, the introduction of a methyl group at the ortho position of NN imposes drastic steric effects. Two complexes, [RuII (tpy)(6-mbpy)(CH3 CN)]2+ (trans-[3]2+ ; 6-mbpy=6-methyl-2,2'-bipyridine) and [RuII (tBu-tpy)(6-mbpy)(CH3 CN)]2+ (trans-[4]2+ ), in which the methyl group of the 6-mbpy ligand is trans to the CH3 CN ligand, show electrocatalytic CO2 reduction at a previously unreactive oxidation state of the complex. This low overpotential pathway follows an ECE mechanism (electron transfer-chemical reaction-electron transfer), and is a direct result of steric interactions that facilitate CH3 CN ligand dissociation, CO2 coordination, and ultimately catalytic turnover at the first reduction potential of the complexes. All experimental observations are rigorously corroborated by DFT calculations.

8.
Angew Chem Int Ed Engl ; 55(5): 1825-9, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26671836

RESUMO

The introduction of a simple methyl substituent on the bipyridine ligand of [Ru(tBu3 tpy)(bpy)(NCCH3 )](2+) (tBu3 tpy=4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine; bpy=2,2'-bipyridine) gives rise to a highly active electrocatalyst for the reduction of CO2 to CO. The methyl group enables CO2 binding already at the one-electron reduced state of the complex to enter a previously not accessible catalytic cycle that operates at the potential of the first reduction. The complex turns over with a Faradaic efficiency close to unity and at an overpotential that is amongst the lowest ever reported for homogenous CO2 reduction catalysts.

9.
Inorg Chem ; 54(20): 10042-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26406159

RESUMO

Formamidinate-bridged Rh2(II,II) complexes containing diimine ligands of the formula cis-[Rh2(II,II)(µ-DTolF)2(NN)2](2+) (Rh2-NN2), where DTolF = p-ditolylformamidinate and NN = dppn (benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline), dppz (dipyrido[3,2-a:2',3'-c]phenazine), and phen (1,10-phenanthroline), electrocatalytically reduce H(+) to H2 in DMF solutions containing CH3COOH at a glassy carbon electrode. Cathodic scans in the absence of acid display a Rh(III,II/II,II) reduction at -0.90 V vs Fc(+)/Fc followed by NN(0/-) reduction at -1.13, -1.36, and -1.65 V for Rh2-dppn2, Rh2-dppz2, and Rh2-phen2, respectively. Upon the addition of acid, Rh2-dppn2 and Rh2-dppz2 undergo reduction-protonation-reduction at each pyrazine-containing NN ligand prior to the Rh2(II,II/II,I) reduction. The Rh2(II,I) species is then protonated at one of the metal centers, resulting in the formation of the corresponding Rh2(II,III)-hydride. In the case of Rh2-phen2, the reduction of the phen ligand is followed by intramolecular electron transfer to the Rh2(II,II) core in the presence of protons to form a Rh2(II,III)-hydride species. Further reduction and protonation at the Rh2 core for all three complexes rapidly catalyzes H2 formation with varied calculated turnover frequencies (TOF) and overpotential values (η): 2.6 × 10(4) s(-1) and 0.56 V for Rh2-dppn, 2.8 × 10(4) s(-1) and 0.50 V for Rh2-dppz2, and 5.9 × 10(4) s(-1) and 0.64 V for Rh2-phen2. Bulk electrolysis confirmed H2 formation, and further CH3COOH addition regenerates H2 production, attesting to the robust nature of the architecture. The cis-[Rh2(II,II)(µ-DTolF)2(NN)2](2+) architecture benefits by combining electron-rich formamidinate bridges, a redox-active Rh2(II,II) core, and electron-accepting NN diimine ligands to allow for the electrocatalysis of H(+) substrate to H2 fuel.

10.
J Phys Chem A ; 119(26): 6781-90, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26054003

RESUMO

A series of three new complexes of the design [(TL)2Ru(BL)](2+), two new complexes of the design [(TL)2Ru(BL)Ru(TL)2](4+), and three new complexes of the design [(TL)2Ru(BL)RhCl2(TL)](3+) (TL = bpy or d8-bpy; BL = dpp or d10-dpp; TL = terminal ligand; BL = bridging ligand; bpy = 2,2'-bipyridine; dpp = 2,3-bis(2-pyridyl)pyrazine) were synthesized and the (1)H NMR spectroscopy, electrochemistry, electronic absorbance spectroscopy, and photophysical properties studied. Incorporation of deuterated ligands into the molecular architecture simplifies the (1)H NMR spectra, allowing for complete (1)H assignment of [(d8-bpy)2Ru(dpp)](PF6)2 and partial assignment of [(bpy)2Ru(d10-dpp)](PF6)2. The electrochemistry for the deuterated and nondeuterated species showed nearly identical redox properties. Electronic absorption spectroscopy of the deuterated and nondeuterated complexes are superimposable with the lowest energy transition being Ru(dπ) → BL(π*) charge transfer in nature (BL = dpp or d10-dpp). Ligand deuteration impacts the excited-state properties with an observed increase in the quantum yield of emission (Φ(em)) and excited-state lifetime (τ) of the Ru(dπ) → d10-dpp(π*) triplet metal-to-ligand charge transfer ((3)MLCT) excited state when dpp is deuterated, and a decrease in the rate constant for nonradiative decay (knr). Choice of ligand deuteration between bpy and dpp strongly impacts the observed photophysical properties with BL = d10-dpp complexes showing an enhanced Φ(em) and τ, providing further support that the lowest electronic excited state populated via UV or visible excitation is the photoactive Ru(dπ) → dpp(π*) CT excited state. The Ru(II),Rh(III) complex incorporating the deuterated BL shows increased hydrogen production compared to the variants incorporating the protiated BL, while demonstrating identical dynamic quenching behaviors in the presence of sacrificial electron donor.

11.
Inorg Chem ; 54(7): 3545-51, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25782053

RESUMO

The new bimetallic complex [(Ph2phen)2Ru(dpp)RhBr2(Ph2phen)](PF6)3 (1) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline; dpp = 2,3-bis(2-pyridyl)pyrazine) was synthesized and characterized to compare with the Cl(-) analogue [(Ph2phen)2Ru(dpp)RhCl2(Ph2phen)](PF6)3 (2) in an effort to better understand the role of halide coordination at the Rh metal center in solar H2 production schemes. Electrochemical properties of complex 1 display a reversible Ru(II/III) oxidation, and cathodic scans indicate multiple electrochemical mechanisms exist to reduce Rh(III) by two electrons to Rh(I) followed by a quasi-reversible dpp(0/-) ligand reduction. The weaker σ-donating ability of Br(-) vs Cl(-) impacts the cathodic electrochemistry and provides insight into photocatalytic function by these bimetallic supramolecules. Complexes 1 and 2 exhibit identical light-absorbing properties with UV absorption dominated by intraligand (IL) π → π* transitions and visible absorption by metal-to-ligand charge transfer (MLCT) transitions to include a lowest energy Ru(dπ) → dpp(π*) (1)MLCT transition (λ(abs) = 514 nm; ε = 16 000 M(-1) cm(-1)). The relatively short-lived, weakly emissive Ru(dπ) → dpp(π*) (3)MLCT excited state (τ = 46 ns) for both bimetallic complexes is attributed to intramolecular electron transfer from the (3)MLCT excited state to populate a low-energy Ru(dπ) → Rh(dσ*) triplet metal-to-metal charge transfer ((3)MMCT) excited state that allows photoinitiated electron collection. Complex 1 outperforms the related Cl(-) bimetallic analogue 2 as a H2 photocatalyst despite identical light-absorbing and excited-state properties. Additional H2 experiments with added halide suggest ion pairing plays a role in catalyst deactivation and provides new insight into observed differences in H2 production upon halide variation in Ru(II),Rh(III) supramolecular architectures.

12.
Dalton Trans ; 43(40): 15028-37, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25072294

RESUMO

A series of Ru(II)-polypyridyl complexes of the design [Ru(II)(tpy)(NN)X](n+) (tpy = 2,2':6',2''-terpyridine; NN = bidentate polypyridine; X = Cl(-) or CH3CN; n = 1 or 2) have been synthesized and analyzed for their ability to function as electrocatalysts in the reduction of CO2 to CO. Varying the electron-donating/withdrawing character of the NN polypyridyl ligand has allowed for modification of electron density at the formally Ru(II) metal center. Complexes where X = Cl(-) display ligand substitution for CH3CN with differing rates of Cl(-) dissociation (k-Cl), therefore providing a degree of insight into the electron density and thus the chemical activity at the Ru(II) center. Detailed analysis of the cyclic voltammograms under argon vs. CO2 atmospheres using multiple switching potentials and scan rates ranging from ν = 25-2000 mV s(-1) has painted a picture of how monodentate ligand lability due to NN polypyridyl electron-donating character is related to electrocatalytic CO2 reduction activity of Ru(II)-polypyridyl complexes. From these studies, multiple mechanistic pathways towards generating the catalytically active [Ru(tpy(-))(NN(-))CO2](0) species are proposed and differ via the order of electrochemical and chemical processes.


Assuntos
Dióxido de Carbono/química , Compostos Organometálicos/química , Piridinas/química , Rutênio/química , Catálise , Técnicas Eletroquímicas , Ligantes , Oxirredução
13.
Chemistry ; 20(27): 8265-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965539

RESUMO

Unusual and unprecedented multipathway electrochemical mechanisms for a new class of supramolecular Ru/Rh bimetallic photocatalysts have been uncovered. The near isoenergetic Rh(dσ*) and bridging ligand(π*) molecular orbitals and a rate of halide loss that occurs on the cyclic voltammetry timescale provide a series of closely related complexes which display four different electrochemical mechanisms. A single complex displays two concurrent electrochemical pathways in marked contrast to all previously studied cis-[Rh(NN)(2)X(2)] motifs.

14.
Inorg Chem ; 52(17): 9749-60, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23941111

RESUMO

Two new structurally diverse polyazine-bridged Ru(II),Pt(II) tetrametallic complexes, [{(Ph2phen)2Ru(dpp)}2Ru(dpp)PtCl2](PF6)6 (1a) and [{(Ph2phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (2a) (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline), as well as their trimetallic precursors have been synthesized to provide a comparison for detailed analysis to elucidate component effects in the previously reported photocatalyst [{(phen)2Ru(dpp)}2Ru(dpq)PtCl2](PF6)6 (4a) (phen = 1,10-phenanthroline). Electrochemistry shows terminal Ru based highest occupied molecular orbitals (HOMOs) with remote BL' (BL' = bridging ligand coupling central Ru and cis-PtCl2 moiety) based lowest unoccupied molecular orbitals (LUMOs). Population of a lowest-lying charge separated ((3)CS) excited state with oxidized terminal Ru and reduced remote BL' via intramolecular electron transfer is predicted by electrochemical analysis and is observed through steady-state and time-resolved emission studies as well as emission excitation profiles which display unusual nonunity population of the lowest lying emissive Ru→dpp (3)MLCT (metal-to-ligand charge transfer) state. Each tetrametallic complex is an active photocatalyst for H2 production from H2O with 2a showing the highest activity (94 TON (turnover number) in 10 h, where TON = mol H2/mol catalyst). The nature of the bridging ligand coupling the trimetallic light absorber to the cis-PtCl2 moiety has a significant impact on the catalyst activity, correlated to the degree of population of the (3)CS excited state. The choice of terminal ligand affects visible light absorption and has a minor influence on photocatalytic H2 production from H2O. Evidence that an intact supramolecule functions as the photocatalyst includes a strong dependence of the photocatalysis on the identity of BL', an insensitivity to Hg(l), no detectable H2 production from the systems with the trimetallic synthons and cis-[PtCl2(DMSO)2] as well as spectroscopic analysis of the photocatalytic system.

15.
Chem Commun (Camb) ; 49(77): 8638-40, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23939252

RESUMO

Early intermediates of catalytic water reduction by a Co(II)-polypyridyl species have been characterized. Electrochemical detection of the Co(III)-hydride and time-resolved spectroscopic detection of the Co(I)-ligand intermediates provide an understanding of their reactivity in electrolytic or light-driven reduction of protons to hydrogen.

17.
J Am Chem Soc ; 133(39): 15332-4, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21875106

RESUMO

Ru,Rh,Ru supramolecules are known to undergo multielectron photoreduction and reduce H(2)O to H(2). Ru,Rh bimetallics were recently shown to photoreduce but not catalyze H(2)O reduction. Careful tuning of sterics and electronics for [(TL)(2)Ru(dpp)RhCl(2)(TL')](3+) produce active bimetallic photocatalysts (TL = terminal ligand). The system with TL,TL' = Ph(2)phen photocatalytically reduces H(2)O to H(2) while TL,TL' = phen,bpy or bpy,(t)Bu(2)bpy do not.

18.
Chem Commun (Camb) ; 47(15): 4451-3, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21387071

RESUMO

Ru,Rh,Ru complexes are photocatalysts for the reduction of H(2)O to H(2)via a Rh(I) intermediate. The herein reported Ru,Rh bimetallics undergo PEC but do not catalyze the reduction of H(2)O, establishing intact supramolecules are photoactive in the Ru,Rh,Ru systems. The Ru,Rh(I) photoproduct dimerizes via Rh-Rh bond formation, deactivating the Rh(I) center sterically prohibited in the Ru,Rh,Ru trimetallic systems.

19.
ChemSusChem ; 4(4): 514-8, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21438156

RESUMO

Covalent coupling of Ru(II) light absorbers to a Rh(III) electron collecting site through polyazine bridging ligands affords photocatalytic production of H(2) in the presence of visible light and a sacrificial electron donor. A robust photocatalytic system displaying a high turnover of the photocatalyst has been developed using the photoinitiated electron collector [{(bpy)(2)Ru(dpp)}(2)RhBr(2)](5+) (bpy=2,2'-bipyridine; dpp=2,3-bis(2-pyridyl)pyrazine) and N,N-dimethylaniline in DMF/H(2)O. Studies have shown that increased [DMA], the headspace volume, and the use of DMF solvent improves the systems performance and stability providing mechanistic insight into the deactivation routes of the photocatalytic system. Photolysis of the system at 460 nm generates 20 mL of H(2) in 19.5 h with a maximum Φ=0.023 based on H(2) produced and an overall Φ=0.014 and 280 turnovers of the photocatalyst. The photocatalytic system also displays long-term photostability with 30 mL of H(2) generated and 420 turnovers in 50 h under the same conditions. Prolonged photolysis provides 820 mol H(2) per mole of catalyst.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Ródio/química , Rutênio/química , Água/química , Compostos de Anilina/química , Catálise , Elétrons , Compostos Organometálicos/química , Oxirredução , Solventes/química
20.
Materials (Basel) ; 5(1): 27-46, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28817031

RESUMO

Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL)2Ru(dpp)}2RhX2](PF6)5 with TL = bpy, phen or Ph2phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the ³MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the ³MLCT state and not the ³MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA