RESUMO
Introduction: Hispanic/Latino populations are underrepresented in Alzheimer Disease (AD) genetic studies. Puerto Ricans (PR), a three-way admixed (European, African, and Amerindian) population is the second-largest Hispanic group in the continental US. We aimed to conduct a genome-wide association study (GWAS) and comprehensive analyses to identify novel AD susceptibility loci and characterize known AD genetic risk loci in the PR population. Materials and methods: Our study included Whole Genome Sequencing (WGS) and phenotype data from 648 PR individuals (345 AD, 303 cognitively unimpaired). We used a generalized linear-mixed model adjusting for sex, age, population substructure, and genetic relationship matrix. To infer local ancestry, we merged the dataset with the HGDP/1000G reference panel. Subsequently, we conducted univariate admixture mapping (AM) analysis. Results: We identified suggestive signals within the SLC38A1 and SCN8A genes on chromosome 12q13. This region overlaps with an area of linkage of AD in previous studies (12q13) in independent data sets further supporting. Univariate African AM analysis identified one suggestive ancestral block (p = 7.2×10-6) located in the same region. The ancestry-aware approach showed that this region has both European and African ancestral backgrounds and both contributing to the risk in this region. We also replicated 11 different known AD loci -including APOE- identified in mostly European studies, which is likely due to the high European background of the PR population. Conclusion: PR GWAS and AM analysis identified a suggestive AD risk locus on chromosome 12, which includes the SLC38A1 and SCN8A genes. Our findings demonstrate the importance of designing GWAS and ancestry-aware approaches and including underrepresented populations in genetic studies of AD.
RESUMO
BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.
Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Humanos , Predisposição Genética para Doença/genética , Negro ou Afro-Americano/genética , Doença de Alzheimer/genética , Mapeamento Cromossômico/métodos , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Alzheimer disease (AD) is the leading cause of dementia in the elderly and occurs in all ethnic and racial groups. The apolipoprotein E (ApoE) ε4 is the most significant genetic risk factor for late-onset AD and shows the strongest effect among East Asian populations followed by non-Hispanic white populations and has a relatively lower effect in African descent populations. Admixture analysis in the African American and Puerto Rican populations showed that the variation in ε4 risk is correlated with the genetic ancestral background local to the ApoE gene. Native American populations are substantially underrepresented in AD genetic studies. The Peruvian population with up to ~80 of Amerindian (AI) ancestry provides a unique opportunity to assess the role of AI ancestry in AD. In this study, we assess the effect of the ApoE ε4 allele on AD in the Peruvian population. A total of 79 AD cases and 128 unrelated cognitive healthy controls from Peruvian population were included in the study. Genome-wide genotyping was performed using the Illumina Global screening array v2.0. Global ancestry and local ancestry analyses were assessed. The effect of the ApoE ε4 allele on AD was tested using a logistic regression model by adjusting for age, gender, and population substructure (first 3 principal components). Results showed that the genetic ancestry surrounding the ApoE gene is predominantly AI (60.6%) and the ε4 allele is significantly associated with increased risk of AD in the Peruvian population (odds ratio = 5.02, confidence interval: 2.3-12.5, p-value = 2e-4). Our results showed that the risk for AD from ApoE ε4 in Peruvians is higher than we have observed in non-Hispanic white populations. Given the high admixture of AI ancestry in the Peruvian population, it suggests that the AI genetic ancestry local to the ApoE gene is contributing to a strong risk for AD in ε4 carriers. Our data also support the findings of an interaction between the genetic risk allele ApoE ε4 and the ancestral backgrounds located around the genomic region of ApoE gene.