Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 93(1): 193-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970897

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) measures of ambient air pollution are associated with accelerated age-related cognitive impairment, and Alzheimer's disease and related dementias (ADRD). OBJECTIVE: We examined associations between air pollution, four cognitive factors, and the moderating role of apolipoprotein E (APOE) genotype in the understudied period of midlife. METHODS: Participants were ∼1,100 men in the Vietnam Era Twin Study of Aging. Baseline cognitive assessments were from 2003 to 2007. Measures included past (1993-1999) and recent (3 years prior to baseline assessment) PM2.5 and NO2 exposure, in-person assessment of episodic memory, executive function, verbal fluency, and processing speed, and APOE genotype. Average baseline age was 56 years with a 12-year follow-up. Analyses adjusted for health and lifestyle covariates. RESULTS: Performance in all cognitive domains declined from age 56 to 68. Higher PM2.5 exposures were associated with worse general verbal fluency. We found significant exposure-by-APOE genotype interactions for specific cognitive domains: PM2.5 with executive function and NO2 with episodic memory. Higher PM2.5 exposure was related to worse executive function in APOE ɛ4 carriers, but not in non-carriers. There were no associations with processing speed. CONCLUSION: These results indicate negative effects of ambient air pollution exposure on fluency alongside intriguing differential modifications of cognitive performance by APOE genotype. APOE ɛ4 carriers appeared more sensitive to environmental differences. The process by which air pollution and its interaction with genetic risk for ADRD affects risk for later life cognitive decline or progression to dementia may begin in midlife.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Humanos , Idoso , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cognição , Material Particulado/efeitos adversos , Material Particulado/análise , Apolipoproteínas E/genética , Genótipo , Exposição Ambiental/efeitos adversos
3.
Front Aging Neurosci ; 14: 831002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493948

RESUMO

Magnetic resonance imaging data are being used in statistical models to predicted brain ageing (PBA) and as biomarkers for neurodegenerative diseases such as Alzheimer's Disease. Despite their increasing application, the genetic and environmental etiology of global PBA indices is unknown. Likewise, the degree to which genetic influences in PBA are longitudinally stable and how PBA changes over time are also unknown. We analyzed data from 734 men from the Vietnam Era Twin Study of Aging with repeated MRI assessments between the ages 51-72 years. Biometrical genetic analyses "twin models" revealed significant and highly correlated estimates of additive genetic heritability ranging from 59 to 75%. Multivariate longitudinal modeling revealed that covariation between PBA at different timepoints could be explained by a single latent factor with 73% heritability. Our results suggest that genetic influences on PBA are detectable in midlife or earlier, are longitudinally very stable, and are largely explained by common genetic influences.

4.
Addiction ; 117(4): 1049-1059, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34605095

RESUMO

BACKGROUND AND AIMS: Smoking is associated with increased risk for brain aging/atrophy and dementia. Few studies have examined early associations with brain aging. This study aimed to measure whether adult men with a history of heavier smoking in early mid-life would have older than predicted brain age 16-28 years later. DESIGN: Prospective cohort observational study, utilizing smoking pack years data from average age 40 (early mid-life) predicting predicted brain age difference scores (PBAD) at average ages 56, 62 (later mid-life) and 68 years (early old age). Early mid-life alcohol use was also evaluated. SETTING: Population-based United States sample. PARTICIPANTS/CASES: Participants were male twins of predominantly European ancestry who served in the United States military between 1965 and 1975. Structural magnetic resonance imaging (MRI) began at average age 56. Subsequent study waves included most baseline participants; attrition replacement subjects were added at later waves. MEASUREMENTS: Self-reported smoking information was used to calculate pack years smoked at ages 40, 56, 62, and 68. MRIs were processed with the Brain-Age Regression Analysis and Computation Utility software (BARACUS) program to create PBAD scores (chronological age-predicted brain age) acquired at average ages 56 (n = 493; 2002-08), 62 (n = 408; 2009-14) and 68 (n = 499; 2016-19). FINDINGS: In structural equation modeling, age 40 pack years predicted more advanced age 56 PBAD [ß = -0.144, P = 0.012, 95% confidence interval (CI) = -0.257, -0.032]. Age 40 pack years did not additionally predict PBAD at later ages. Age 40 alcohol consumption, but not a smoking × alcohol interaction, predicted more advanced PBAD at age 56 (ß = -0.166, P = 0.001, 95% CI = -0.261, -0.070) with additional influences at age 62 (ß = -0.115, P = 0.005, 95% CI = -0.195, -0.036). Age 40 alcohol did not predict age 68 PBAD. Within-twin-pair analyses suggested some genetic mechanism partially underlying effects of alcohol, but not smoking, on PBAD. CONCLUSIONS: Heavier smoking and alcohol consumption by age 40 appears to predict advanced brain aging by age 56 in men.


Assuntos
Fumar Cigarros , Adolescente , Adulto , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Fumar Cigarros/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Nicotiana , Adulto Jovem
5.
Neurobiol Aging ; 109: 229-238, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785406

RESUMO

Because longitudinal studies of aging typically lack cognitive data from earlier ages, it is unclear how general cognitive ability (GCA) changes throughout the life course. In 1173 Vietnam Era Twin Study of Aging (VETSA) participants, we assessed young adult GCA at average age 20 and current GCA at 3 VETSA assessments beginning at average age 56. The same GCA index was used throughout. Higher young adult GCA and better GCA maintenance were associated with stronger specific cognitive abilities from age 51 to 73. Given equivalent GCA at age 56, individuals who had higher age 20 GCA outperformed those whose GCA remained stable in terms of memory, executive function, and working memory abilities from age 51 to 73. Thus, paradoxically, despite poorer maintenance of GCA, high young adult GCA still conferred benefits. Advanced predicted brain age and the combination of elevated vascular burden and APOE-ε4 status were associated with poorer maintenance of GCA. These findings highlight the importance of distinguishing between peak and current GCA for greater understanding of cognitive aging.


Assuntos
Envelhecimento/psicologia , Encéfalo/fisiologia , Cognição , Função Executiva , Adulto , Idoso , Envelhecimento/genética , Apolipoproteínas E/metabolismo , Humanos , Estudos Longitudinais , Masculino , Memória , Memória de Curto Prazo , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estudos em Gêmeos como Assunto , Gêmeos , Adulto Jovem
6.
Psychol Med ; 52(14): 3007-3017, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33431106

RESUMO

BACKGROUND: Clarifying the relationship between depression symptoms and cardiometabolic and related health could clarify risk factors and treatment targets. The objective of this study was to assess whether depression symptoms in midlife are associated with the subsequent onset of cardiometabolic health problems. METHODS: The study sample comprised 787 male twin veterans with polygenic risk score data who participated in the Harvard Twin Study of Substance Abuse ('baseline') and the longitudinal Vietnam Era Twin Study of Aging ('follow-up'). Depression symptoms were assessed at baseline [mean age 41.42 years (s.d. = 2.34)] using the Diagnostic Interview Schedule, Version III, Revised. The onset of eight cardiometabolic conditions (atrial fibrillation, diabetes, erectile dysfunction, hypercholesterolemia, hypertension, myocardial infarction, sleep apnea, and stroke) was assessed via self-reported doctor diagnosis at follow-up [mean age 67.59 years (s.d. = 2.41)]. RESULTS: Total depression symptoms were longitudinally associated with incident diabetes (OR 1.29, 95% CI 1.07-1.57), erectile dysfunction (OR 1.32, 95% CI 1.10-1.59), hypercholesterolemia (OR 1.26, 95% CI 1.04-1.53), and sleep apnea (OR 1.40, 95% CI 1.13-1.74) over 27 years after controlling for age, alcohol consumption, smoking, body mass index, C-reactive protein, and polygenic risk for specific health conditions. In sensitivity analyses that excluded somatic depression symptoms, only the association with sleep apnea remained significant (OR 1.32, 95% CI 1.09-1.60). CONCLUSIONS: A history of depression symptoms by early midlife is associated with an elevated risk for subsequent development of several self-reported health conditions. When isolated, non-somatic depression symptoms are associated with incident self-reported sleep apnea. Depression symptom history may be a predictor or marker of cardiometabolic risk over decades.


Assuntos
Disfunção Erétil , Hipercolesterolemia , Hipertensão , Síndromes da Apneia do Sono , Humanos , Masculino , Adulto , Idoso , Estudos Longitudinais , Depressão/epidemiologia , Fatores de Risco
7.
Neurobiol Aging ; 108: 80-89, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547718

RESUMO

We examined the influence of lifestyle on brain aging after nearly 30 years, and tested the hypothesis that young adult general cognitive ability (GCA) would moderate these effects. In the community-dwelling Vietnam Era Twin Study of Aging (VETSA), 431 largely non-Hispanic white men completed a test of GCA at mean age 20. We created a modifiable lifestyle behavior composite from data collected at mean age 40. During VETSA, MRI-based measures at mean age 68 included predicted brain age difference (PBAD), Alzheimer's disease (AD) brain signature, and abnormal white matter scores. There were significant main effects of young adult GCA and lifestyle on PBAD and the AD signature (ps ≤ 0.012), and a GCA-by-lifestyle interaction on both (ps ≤ 0.006). Regardless of GCA level, having more favorable lifestyle behaviors predicted less advanced brain age and less AD-like brain aging. Unfavorable lifestyles predicted advanced brain aging in those with lower age 20 GCA, but did not affect brain aging in those with higher age 20 GCA. Targeting early lifestyle modification may promote dementia risk reduction, especially among lower reserve individuals.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Doença de Alzheimer/prevenção & controle , Comportamento/fisiologia , Cognição/fisiologia , Reserva Cognitiva/fisiologia , Estilo de Vida Saudável/fisiologia , Vida Independente/psicologia , Estilo de Vida , Adulto , Fatores Etários , Idoso , Envelhecimento/patologia , Doença de Alzheimer/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia , Adulto Jovem
8.
Brain Commun ; 3(3): fcab167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396116

RESUMO

Neuroimaging signatures based on composite scores of cortical thickness and hippocampal volume predict progression from mild cognitive impairment to Alzheimer's disease. However, little is known about the ability of these signatures among cognitively normal adults to predict progression to mild cognitive impairment. Towards that end, a signature sensitive to microstructural changes that may predate macrostructural atrophy should be useful. We hypothesized that: (i) a validated MRI-derived Alzheimer's disease signature based on cortical thickness and hippocampal volume in cognitively normal middle-aged adults would predict progression to mild cognitive impairment; and (ii) a novel grey matter mean diffusivity signature would be a better predictor than the thickness/volume signature. This cohort study was part of the Vietnam Era Twin Study of Aging. Concurrent analyses compared cognitively normal and mild cognitive impairment groups at each of three study waves (ns = 246-367). Predictive analyses included 169 cognitively normal men at baseline (age = 56.1, range = 51-60). Our previously published thickness/volume signature derived from independent data, a novel mean diffusivity signature using the same regions and weights as the thickness/volume signature, age, and an Alzheimer's disease polygenic risk score were used to predict incident mild cognitive impairment an average of 12 years after baseline (follow-up age = 67.2, range = 61-71). Additional analyses adjusted for predicted brain age difference scores (chronological age minus predicted brain age) to determine if signatures were Alzheimer-related and not simply ageing-related. In concurrent analyses, individuals with mild cognitive impairment had higher (worse) mean diffusivity signature scores than cognitively normal participants, but thickness/volume signature scores did not differ between groups. In predictive analyses, age and polygenic risk score yielded an area under the curve of 0.74 (sensitivity = 80.00%; specificity = 65.10%). Prediction was significantly improved with addition of the mean diffusivity signature (area under the curve = 0.83; sensitivity = 85.00%; specificity = 77.85%; P = 0.007), but not with addition of the thickness/volume signature. A model including both signatures did not improve prediction over a model with only the mean diffusivity signature. Results held up after adjusting for predicted brain age difference scores. The novel mean diffusivity signature was limited by being yoked to the thickness/volume signature weightings. An independently derived mean diffusivity signature may thus provide even stronger prediction. The young age of the sample at baseline is particularly notable. Given that the brain signatures were examined when participants were only in their 50 s, our results suggest a promising step towards improving very early identification of Alzheimer's disease risk and the potential value of mean diffusivity and/or multimodal brain signatures.

9.
Alzheimers Dement ; 17(6): 1017-1025, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580733

RESUMO

INTRODUCTION: The locus coeruleus (LC) undergoes extensive neurodegeneration in early Alzheimer's disease (AD). The LC is implicated in regulating the sleep-wake cycle, modulating cognitive function, and AD progression. METHODS: Participants were 481 men (ages 62 to 71.7) from the Vietnam Era Twin Study of Aging. LC structural integrity was indexed by neuromelanin-sensitive magnetic resonance imaging (MRI) contrast-to-noise ratio (LCCNR ). We examined LCCNR , cognition, amnestic mild cognitive impairment (aMCI), and daytime dysfunction. RESULTS: Heritability of LCCNR was .48. Participants with aMCI showed greater daytime dysfunction. Lower LCCNR was associated with poorer episodic memory, general verbal fluency, semantic fluency, and processing speed, as well as increased odds of aMCI and greater daytime dysfunction. DISCUSSION: Reduced LC integrity is associated with widespread differences across cognitive domains, daytime sleep-related dysfunction, and risk for aMCI. These findings in late-middle-aged adults highlight the potential of MRI-based measures of LC integrity in early identification of AD risk.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/patologia , Locus Cerúleo/patologia , Idoso , Envelhecimento/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória , Testes Neuropsicológicos/estatística & dados numéricos , Sono
10.
Neurobiol Aging ; 83: 114-121, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31585363

RESUMO

Locus coeruleus (LC) tau accumulation begins early. Targeting LC (dys)function might improve early identification for Alzheimer's disease (AD) risk. Pupillary responses during cognitive tasks are driven by the LC and index cognitive effort. Despite equivalent task performance, adults with mild cognitive impairment have greater pupil dilation/effort during digit span than cognitively normal (CN) individuals. We hypothesized that AD polygenic risk scores (AD-PRSs) would be associated with pupillary responses in middle-aged CN adults. Pupillary responses during digit span tasks were heritable (h2 = 0.30-0.36) in 1119 men aged 56-66 years. In a CN subset-all with comparable span capacities (n = 539)-higher AD-PRSs were associated with greater pupil dilation/effort in a high (9-digit) cognitive load condition (Cohen's d = 0.36 for upper vs. lower quartile of AD-PRS distribution). Results held up after controlling for APOE genotype. Results support pupillary response-and by inference, LC dysfunction-as a genetically mediated biomarker of early mild cognitive impairment/AD risk. In combination with other biomarkers, task-evoked pupillary responses may provide additional information for early screening of genetically at-risk individuals even before cognitive declines.


Assuntos
Doença de Alzheimer/psicologia , Biomarcadores/análise , Cognição/fisiologia , Disfunção Cognitiva/psicologia , Adulto , Idoso , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Transtornos Cognitivos/complicações , Transtornos Cognitivos/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Proteínas tau/genética
11.
Neurobiol Aging ; 79: 11-21, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31026618

RESUMO

Evidence strongly suggests that being overweight or obese at midlife confers significantly higher risk for Alzheimer's disease and greater brain atrophy later in life. Few studies, however, examine associations between longitudinal changes in adiposity during early adulthood and later brain morphometry. Measures of body mass index (BMI) were collected in 373 men from the Vietnam Era Twin Study of Aging at average ages 20, 40, 56, and 62 years, yielding 2 BMI trajectories. We then examined associations between BMI phenotypes (trajectories, continuous BMI, obese/nonobese), cortical thickness, and white matter measures from structural magnetic resonance imaging at mean age 62 (time 4, range 56-66 years). Those on the obesity trajectory (N = 171) had a thinner cortex compared with the normal/lean trajectory (N = 202) in multiple frontal and temporal lobe bilateral regions of interest: superior, inferior, middle temporal gyri, temporal pole, fusiform gyrus, banks of the superior temporal sulcus, frontal pole, pars triangularis, caudal and rostral middle frontal gyri (all p < 0.05, false discovery rate corrected). Frontal lobe thinness tended to occur mainly in the right hemisphere. Results were similar for obese versus nonobese adults at age 62. There were no significant differences for white matter volume or abnormalities. Taken in the context of other research, these associations between brain structures and excess BMI at midlife suggest potential for increased risk for cognitive decline in later life.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/etiologia , Índice de Massa Corporal , Trajetória do Peso do Corpo , Córtex Cerebral/patologia , Obesidade/complicações , Adiposidade , Idoso , Atrofia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Risco , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA