Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Future Oncol ; : 1-12, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140289

RESUMO

This is a single arm, open label perioperative trial to assess the feasibility, pharmacokinetics and pharmacodynamics of treatment with safusidenib following biopsy, and prior to surgical resection in patients with IDH1 mutated glioma who have not received radiation therapy or chemotherapy. Fifteen participants will receive treatment in two parts. First, biopsy followed by one cycle (28 days) of safusidenib, an orally available, small molecular inhibitor of mutated IDH1, then maximal safe resection of the tumor (Part A). Second, after recovery from surgery, safusidenib until disease progression or unacceptable toxicity (Part B). This research will enable objective measurement of biological activity of safusidenib in patients with IDH1 mutated glioma. Anti-tumor activity will be assessed by progression free survival and time to next intervention.Clinical Trial Registration: NCT05577416 (ClinicalTrials.gov).


Adult low-grade gliomas (aLGG) are primary brain cancers, defined by mutations in IDH1 or IDH2. When the IDH gene becomes abnormal (mutated), production of a metabolite that causes cancer cells to grow is increased. These tumors grow slowly but invade the normal functioning brain, making them nearly impossible to cure. The current standard of care treatment includes surgery, followed by radiation therapy and chemotherapy, the timing of which depends on the risk of cancer regrowth. Some patients may be suitable for monitoring with MRI scans alone, however recurrences will inevitably occur. Recently developed targeted mutant IDH inhibitors for aLGG patients may be beneficial both at diagnosis and recurrence. Notably, early treatment prior to radiation therapy and chemotherapy delays growth of aLGG and the need for subsequent radiation therapy and chemotherapy. Nevertheless, most patients will eventually suffer further tumor growth and the optimal timing and sequencing of these therapies remains an area of active research. This research investigates the mutant IDH1 inhibitor safusidenib. The researchers are conducting an innovative clinical trial where patients with aLGG, who have not received radiation therapy or chemotherapy, are treated with safusidenib following a biopsy and prior to surgical removal of their tumor. In this study they investigate whether this trial design is safe and feasible, and how safusidenib works; with the goal to better understand the optimal use of IDH inhibitors for patients with aLGG.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38923830

RESUMO

BACKGROUND: Phase 1 oncology trials provide access to new therapies and may improve cancer outcomes. Phase 1 trials conducted in the Asian-Pacific region are increasing at a faster rate than the global trend. This study aimed to describe the changing landscape of phase 1 oncology trials in Australia in the last decade. METHODS: This cross-sectional study reviewed phase 1 oncology trials registered on ClinicalTrials.gov conducted in Australia. Phase 1 trials were included for analysis if they enrolled adults with solid organ malignancies, used at least one systemic agent, and were first registered between January 1, 2012, and December 31, 2022. The number of trials, site locations, sponsor type, and drug class were analyzed using descriptive statistics. RESULTS: Over the 10-year period, ClinicalTrials.gov included 493 phase 1 clinical trials across 71 Australian sites. Most sites were in metropolitan locations; in Melbourne, trials were concentrated within selected sites, while in Sydney, trials were spread across a larger number of sites. The number of phase 1 trials per annum increased from 18 in 2012 to 75 in 2022. Since 2020, emerging biopharmaceutical companies have become the predominant sponsor type, a trend that is also seen globally. While most trial sponsors were North American (42%), there was increasing representation from Asian sponsors over the 10-year period (6% in 2012 to 39% in 2022). Immunomodulatory (45%) and targeted approaches (44%) accounted for most drug classes used alone or in combination. CONCLUSIONS: There are an increasing number of phase 1 trials conducted within Australia. Sponsors of phase 1 trials are increasingly from Asian countries and are more likely to be emerging biopharmaceutical companies.

3.
Biology (Basel) ; 13(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38927304

RESUMO

Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.

4.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
5.
Genomics ; 116(2): 110793, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38220132

RESUMO

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity and function. However the choice of sample multiplexing reagents can impact data quality and experimental outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We find that minor improvements to laboratory workflows such as titration and rapid processing are critical to optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample multiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.


Assuntos
Leucócitos Mononucleares , Análise de Célula Única , Humanos , Animais , Camundongos , RNA-Seq , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Perfilação da Expressão Gênica/métodos
6.
Neurooncol Adv ; 5(1): vdad142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077210

RESUMO

Background: High-grade gliomas (HGGs) are aggressive primary brain cancers with poor response to standard regimens, driven by immense heterogeneity. In isocitrate dehydrogenase (IDH) wild-type HGG (glioblastoma, GBM), increased intratumoral heterogeneity is associated with more aggressive disease. Methods: Spatial technologies can dissect complex heterogeneity within the tumor ecosystem by preserving cellular organization in situ. We employed GeoMx digital spatial profiling, CosMx spatial molecular imaging, Xenium in situ mapping and Visium spatial gene expression in experimental and validation patient cohorts to interrogate the transcriptional landscape in HGG. Results: Here, we construct a high-resolution molecular map of heterogeneity in GBM and IDH-mutant patient samples to investigate the cellular communities that compose HGG. We uncovered striking diversity in the tumor landscape and degree of spatial heterogeneity within the cellular composition of the tumors. The immune distribution was diverse between samples, however, consistently correlated spatially with distinct tumor cell phenotypes, validated across tumor cohorts. Reconstructing the tumor architecture revealed two distinct niches, one composed of tumor cells that most closely resemble normal glial cells, associated with microglia, and the other niche populated by monocytes and mesenchymal tumor cells. Conclusions: This primary study reveals high levels of intratumoral heterogeneity in HGGs, associated with a diverse immune landscape within spatially localized regions.

7.
Metabolites ; 13(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999235

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.

8.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014234

RESUMO

The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.

9.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
10.
Neuroradiology ; 65(8): 1215-1223, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37316586

RESUMO

PURPOSE: The increasing importance of molecular markers for classification and prognostication of diffuse gliomas has prompted the use of imaging features to predict genotype ("radiogenomics"). CDKN2A/B homozygous deletion has only recently been added to the diagnostic paradigm for IDH[isocitrate dehydrogenase]-mutant astrocytomas; thus, associated radiogenomic literature is sparse. There is also little data on whether different IDH mutations are associated with different imaging appearances. Furthermore, given that molecular status is now generally obtained routinely, the additional prognostic value of radiogenomic features is less clear. This study correlated MRI features with CDKN2A/B status, IDH mutation type and survival in histological grade 2-3 IDH-mutant brain astrocytomas. METHODS: Fifty-eight grade 2-3 IDH-mutant astrocytomas were identified, 50 with CDKN2A/B results. IDH mutations were stratified into IDH1-R132H and non-canonical mutations. Background and survival data were obtained. Two neuroradiologists independently assessed the following MRI features: T2-FLAIR mismatch (<25%, 25-50%, >50%), well-defined tumour margins, contrast-enhancement (absent, wispy, solid) and central necrosis. RESULTS: 8/50 tumours with CDKN2A/B results demonstrated homozygous deletion; slightly shorter survival was not significant (p=0.571). IDH1-R132H mutations were present in 50/58 (86%). No MRI features correlated with CDKN2A/B status or IDH mutation type. T2-FLAIR mismatch did not predict survival (p=0.977), but well-defined margins predicted longer survival (HR 0.36, p=0.008), while solid enhancement predicted shorter survival (HR 3.86, p=0.004). Both correlations remained significant on multivariate analysis. CONCLUSION: MRI features did not predict CDKN2A/B homozygous deletion, but provided additional positive and negative prognostic information which correlated more strongly with prognosis than CDKN2A/B status in our cohort.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Marcadores Genéticos , Homozigoto , Deleção de Sequência , Mutação , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Isocitrato Desidrogenase/genética
11.
Methods Mol Biol ; 2691: 185-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355546

RESUMO

Glioma can be modelled in the murine brain through the induction of genetically engineered mouse models or intracranial transplantation. Gliomas (oligodendroglioma and astrocytoma) are thought to arise from neuronal and glial progenitor populations in the brain and are poorly infiltrated by immune cells. An improved understanding of oligodendrocytes, astrocytes, and the immune environment throughout tumor development will enhance the analysis and development of brain cancer models. Here, we describe the isolation and analysis of murine brain cell types using a combination of flow cytometry and quantitative RT-PCR strategies to analyze these individual cell populations in vivo.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Camundongos , Animais , Citometria de Fluxo , Encéfalo/metabolismo , Glioma/patologia , Astrocitoma/metabolismo , Astrocitoma/patologia , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia
12.
Front Oncol ; 13: 1154246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124503

RESUMO

The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.

13.
J Neurooncol ; 160(2): 361-374, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36355260

RESUMO

PURPOSE: Shorter hypofractionated radiation therapy (HF-RT) schedules may have radiobiological, patient convenience and healthcare resource advantages over conventionally fractionated radiation therapy (CF-RT) in glioblastoma (GBM). We report outcomes of young, fit GBM patients treated with HF-RT and CF-RT during the COVID-19 pandemic, and a meta-analysis of HF-RT literature in this patient subgroup. METHODS: Hospital records of patients with IDH-wildtype GBM treated with HF-RT (50 Gy/20 fractions) and CF-RT (60 Gy/30 fractions) between January 2020 and September 2021 were reviewed. Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier method. Univariable analysis was performed using Cox regression analysis. A systematic search and meta-analysis of studies from January 2000 to January 2022 was performed. RESULTS: 41 patients were treated (HF-RT:15, CF-RT:26). For both HF-RT and CF-RT groups, median age was 58 years and 80-90% were ECOG 0-1. There were more methylated tumours in the HF-RT group. All patients received concurrent/adjuvant temozolomide. At 19.2 months median follow-up, median OS was 19.8 months and not-reached for HF-RT and CF-RT (p = 0.5), and median PFS was 7.7 and 5.8 months, respectively (p = 0.8). HF-RT or CF-RT did not influence OS/PFS on univariable analysis. Grade 3 radionecrosis rate was 6.7% and 7.7%, respectively. 15 of 1135 studies screened from a systematic search were eligible for meta-analysis. For studies involving temozolomide, pooled median OS and PFS with HF-RT were 17.5 and 9.9 months (927 and 862 patients). Studies using shortened HF-RT schedules reported 0-2% Grade 3 radionecrosis rates. CONCLUSION: HF-RT may offer equivalent outcomes and reduce treatment burden compared to CF-RT in young, fit GBM patients.


Assuntos
Neoplasias Encefálicas , COVID-19 , Glioblastoma , Humanos , Pessoa de Meia-Idade , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Pandemias , Temozolomida/uso terapêutico
14.
J Clin Neurosci ; 105: 91-102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122487

RESUMO

The COVID-19 pandemic has challenged the continued delivery of healthcare globally. Due to disease risk, clinicians were forced to re-evaluate the safety and priorities of pre-pandemic care. Neuro-oncology presents unique challenges, as patients can deteriorate rapidly without intervention. These challenges were also observed in countries with reduced COVID-19 burden with centres required to rapidly develop strategies to maintain efficient and equitable care. This review aims to summarise the impact of the pandemic on clinical care and research within the practice of Neuro-oncology. A narrative review of the literature was performed using MEDLINE and EMBASS and results screened using PRISMA guidelines with relevant inclusion and exclusion criteria. Search strategies included variations of 'Neuro-oncology' combined with COVID-19 and other clinical-related terms. Most adult and paediatric neurosurgical centres experienced reductions in new referrals and operations for brain malignancies, and those who did present for treatment frequently had operations cancelled or delayed. Many radiation therapy and medical oncology centres altered treatment plans to mitigate COVID-19 risk for patients and staff. New protocols were developed that aimed to reduce in-person visits and reduce the risk of developing severe complications from COVID-19. The COVID-19 pandemic has presented many challenges to the provision of safe and accessible healthcare. Despite these challenges, some benefits to healthcare provision such as the use of telemedicine are likely to remain in future practice. Neuro-oncology staff must remain vigilant to ensure patient and staff safety.


Assuntos
COVID-19 , Telemedicina , Criança , Humanos , Oncologia , Pandemias
15.
J Clin Neurosci ; 102: 65-70, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728397

RESUMO

Medulloblastoma in adult patients is a rare condition with limited contemporary demographic and treatment outcome data available in an Australian population. We conducted a retrospective review of patterns of care and outcomes of adult patients diagnosed with medulloblastoma treated at major neuro-oncology centres across Australia between January 2010 and December 2019. A total of 80 patients were identified and the median follow-up after diagnosis was 59.2 (range 0.5-204) months. A variety of chemotherapy regimens were used in the adjuvant and recurrent settings. The median overall survival (mOS) was 78 months (IQR 17.5-94.8). Patients who had no residual disease post-resection or with SHH-subtype tumours had a numerically longer 5-year survival rate than those with residual disease post resection or non-SHH subtypes respectively. The median time to recurrence from diagnosis was 18.4 months. The median OS from 1st relapse was 22.1 months (95% CI 11.7-31.4) and mOS from second relapse was 10.2 months (95% CI 6.6 - NR). This is the largest dataset examining patterns of care of adult patients with medulloblastoma in an Australian population. Substantial variation existed in the chemotherapy agents used in the adjuvant and recurrent setting. As has been demonstrated in a paediatric population, trials such as the upcoming EORTC 1634-BTG/NOA-23 trial (PersoMed-1 study) which are tailoring treatments to molecular profiles are likely to improve outcome in adult medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Adulto , Austrália/epidemiologia , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/epidemiologia , Neoplasias Cerebelares/terapia , Criança , Terapia Combinada , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/terapia , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/terapia , Radioterapia Adjuvante , Estudos Retrospectivos
16.
Future Oncol ; 18(15): 1805-1816, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35187951

RESUMO

The addition of a CDK4/6 inhibitor to endocrine therapy improves progression-free and overall survival in women with metastatic estrogen receptor-positive breast cancer. In that setting, CDK4/6 inhibitors induce a potent cell-cycle arrest (which may be accompanied by tumor senescence) but fail to induce apoptotic cell death. Venetoclax is a potent inhibitor of BCL2, a pro-survival protein overexpressed in the majority of estrogen receptor-positive cancers. Pre-clinical findings indicate that venetoclax augments tumor response to the CDK4/6 inhibitor palbociclib by triggering apoptosis, including in senescent cells. The PALVEN phase Ib trial will further examine this finding. The primary objective is to identify the maximum tolerated dose and determine the recommended phase II dose for palbociclib, letrozole and venetoclax combination therapy. Clinical Trial Registration: NCT03900884 (ClinicalTrials.gov).


The current 'gold standard' treatment for estrogen receptor-positive, HER2-negative metastatic breast cancer is endocrine therapy with a CDK4/6 inhibitor. This combination improves tumor response and patient outcomes, primarily by reducing tumor cell growth. Paradoxically, less killing of tumor cells is observed in the presence of a CDK4/6 inhibitor. The authors hypothesize that co-treatment with venetoclax, an inhibitor of the BCL2 survival protein, will help trigger tumor death, thereby further improving tumor responses and patient outcomes. As a first step, combination therapy comprising letrozole, palbociclib and venetoclax will be tested in a phase I trial to identify the recommended doses for subsequent studies.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes , Ensaios Clínicos Fase I como Assunto , Feminino , Humanos , Letrozol/uso terapêutico , Piperazinas , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Piridinas , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Sulfonamidas
17.
Mol Oncol ; 16(5): 1119-1131, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35000262

RESUMO

Breast cancer is a heterogeneous disease that comprises multiple histological and molecular subtypes. To gain insight into mutations that drive breast tumorigenesis, we describe a pipeline for the identification and validation of tumor suppressor genes. Based on an in vivo genome-wide CRISPR/Cas9 screen in Trp53+/- heterozygous mice, we identified tumor suppressor genes that included the scaffold protein Axin1, the protein kinase A regulatory subunit gene Prkar1a, as well as the proof-of-concept genes Pten, Nf1, and Trp53 itself. Ex vivo editing of primary mammary epithelial organoids was performed to further interrogate the roles of Axin1 and Prkar1a. Increased proliferation and profound changes in mammary organoid morphology were observed for Axin1/Trp53 and Prkar1a/Trp53 double mutants compared to Pten/Trp53 double mutants. Furthermore, direct in vivo genome editing via intraductal injection of lentiviruses engineered to express dual short-guide RNAs revealed that mutagenesis of Trp53 and either Prkar1a, Axin1, or Pten markedly accelerated tumor development compared to Trp53-only mutants. This proof-of-principle study highlights the application of in vivo CRISPR/Cas9 editing for uncovering cooperativity between defects in tumor suppressor genes that elicit mammary tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Transformação Celular Neoplásica/genética , Genes Supressores de Tumor , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
J Clin Neurosci ; 89: 144-150, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119258

RESUMO

Gliomas are a heterogeneous group of primary brain cancers with poor survival despite multimodality therapy that includes surgery, radiation and chemotherapy. Numerous clinical trials have investigated systemic therapies in glioma, but have largely been negative. Multiple factors have contributed to the lack of progress including tumour heterogeneity, the tumour micro-environment and presence of the blood-brain barrier, as well as extrinsic factors relating to trial design, such as the lack of a contemporaneous biopsy at the time of treatment. A number of strategies have been proposed to progress new agents into the clinic. Here, we review the progress of perioperative, including phase 0 and 'window of opportunity', studies and provide recommendations for trial design in the development of new agents for glioma. The incorporation of pre- and post-treatment biopsies in glioma early phase trials will provide valuable pharmacokinetic and pharmacodynamic data and also determine the target or biomarker effect, which will guide further development of new agents. Perioperative 'window of opportunity' studies must use drugs with a recommended-phase-2-dose, known safety profile and adequate blood-brain barrier penetration. Drugs shown to have on-target effects in perioperative trials can then be evaluated further in a larger cohort of patients in an adaptive trial to increase the efficiency of drug development.


Assuntos
Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto/métodos , Glioma/patologia , Assistência Perioperatória/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biópsia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/cirurgia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Terapia Combinada/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioma/tratamento farmacológico , Glioma/cirurgia , Humanos , Assistência Perioperatória/tendências , Microambiente Tumoral/fisiologia
20.
Cancer Chemother Pharmacol ; 87(5): 613-620, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33496801

RESUMO

PURPOSE: This phase I study was conducted to evaluate the safety and Maximum Tolerated Dose of PENAO (4-(N-(S-penicillaminylacetyl)amino)-phenylarsonous acid), a second-generation organic arsenical with anti-mitochondrial activity, when given as a continuous intravenous infusion (CIVI), in patients with advanced solid tumours. METHODS: Eligibility criteria for this trial included age ≥ 18 years, advanced solid tumour, ECOG Performance Status ≤ 1 and adequate organ function. PENAO was administered by CIVI, with dose levels initially increased by infusion duration in a 21-day cycle at a fixed daily dose and then increased daily dose. Standard dose-limiting toxicity (DLT) definitions were used in a "3 + 3" design. Patients had regular monitoring of toxicity and efficacy. Pharmacokinetic assays of serum and urine As were performed. RESULTS: Twenty-six patients were treated across 8 dose levels. The only dose-limiting toxicity (DLT) observed was fatigue, that occurred in one patient treated at the highest dose level of 9 mg/m2/day. No significant organ toxicity or objective responses were observed, although there were two patients with stable disease lasting up to 7 months. Pharmacokinetic analysis unexpectedly indicated a half-life of 9-19 days, invalidating the CIVI dosing resulting in discontinuation of the study before the RP2D was defined. CONCLUSIONS: PENAO was administered by CIVI at dose levels up to 9 mg/m2/day with only one DLT noted. Pharmacokinetic studies invalidated the rationale for continuous dosing and led to discontinuation of the trial without defining a RP2D. Future clinical development of PENAO will use intermittent dosing schedule, alone and in combination with rapamycin.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA