Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Assuntos
Autoanticorpos , Peptídeo C , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Adolescente , Criança , Masculino , Feminino , Peptídeo C/sangue , Adulto , Adulto Jovem , Pré-Escolar , Autoanticorpos/sangue , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Estudos de Coortes , Lactente , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo
2.
Genome Med ; 15(1): 69, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700317

RESUMO

BACKGROUND: The immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in COVID-19 patients has been extensively investigated. However, much less is known about the long-term effects of infection in patients and how it could affect the immune system and its capacity to respond to future perturbations. METHODS: Using a targeted single-cell multiomics approach, we have recently identified a prolonged anti-inflammatory gene expression signature in T and NK cells in type 1 diabetes patients treated with low-dose IL-2. Here, we investigated the dynamics of this signature in three independent cohorts of COVID-19 patients: (i) the Oxford COVID-19 Multi-omics Blood Atlas (COMBAT) dataset, a cross-sectional cohort including 77 COVID-19 patients and ten healthy donors; (ii) the INCOV dataset, consisting of 525 samples taken from 209 COVID-19 patients during and after infection; and (iii) a longitudinal dataset consisting of 269 whole-blood samples taken from 139 COVID-19 patients followed for a period of up to 7 months after the onset of symptoms using a bulk transcriptomic approach. RESULTS: We discovered that SARS-CoV-2 infection leads to a prolonged alteration of the gene expression profile of circulating T, B and NK cells and monocytes. Some of the genes affected were the same as those present in the IL-2-induced anti-inflammatory gene expression signature but were regulated in the opposite direction, implying a pro-inflammatory status. The altered transcriptional profile was detected in COVID-19 patients for at least 2 months after the onset of the disease symptoms but was not observed in response to influenza infection or sepsis. Gene network analysis suggested a central role for the transcriptional factor NF-κB in the regulation of the observed transcriptional alterations. CONCLUSIONS: SARS-CoV-2 infection causes a prolonged increase in the pro-inflammatory transcriptional status that could predispose post-acute patients to the development of long-term health consequences, including autoimmune disease, reactivation of other viruses and disruption of the host immune system-microbiome ecosystem.


Assuntos
COVID-19 , Microbiota , Humanos , COVID-19/genética , SARS-CoV-2 , Estudos Transversais , Interleucina-2
3.
Discov Immunol ; 2(1): kyad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649552

RESUMO

Human CD56br natural killer (NK) cells represent a small subset of CD56+ NK cells in circulation and are largely tissue-resident. The frequency and number of CD56br NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4+ regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an in vitro co-culture assay with activated CD4+ T cells to measure NK cell killing efficiency. We show that CD56br and CD56dim NK cells show similar efficiency at killing activated CD4+ conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56dim cells, CD56br NK cells preferentially target highly proliferative cells. We hypothesize that CD56br NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4+ Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56br NK cells.

4.
Nat Commun ; 13(1): 7324, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443294

RESUMO

Despite early clinical successes, the mechanisms of action of low-dose interleukin-2 (LD-IL-2) immunotherapy remain only partly understood. Here we examine the effects of interval administration of low-dose recombinant IL-2 (iLD-IL-2) in type 1 diabetes using high-resolution single-cell multiomics and flow cytometry on longitudinally-collected peripheral blood samples. Our results confirm that iLD-IL-2 selectively expands thymic-derived FOXP3+HELIOS+ regulatory T cells and CD56bright NK cells, and show that the treatment reduces the frequency of IL-21-producing CD4+ T cells and of two innate-like mucosal-associated invariant T and Vγ9Vδ2 CD8+ T cell subsets. The cellular changes induced by iLD-IL-2 associate with an anti-inflammatory gene expression signature, which remains detectable in all T and NK cell subsets analysed one month after treatment. These findings warrant investigations into the potential longer-term clinical benefits of iLD-IL-2 in immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-2 , Linfócitos T , Humanos , Anti-Inflamatórios , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Expressão Gênica , Interleucina-2/genética , Linfócitos T/imunologia
5.
Diabetes ; 71(7): 1591-1596, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35499624

RESUMO

C-peptide declines in type 1 diabetes, although many long-duration patients retain low, but detectable levels. Histological analyses confirm that ß-cells can remain following type 1 diabetes onset. We explored the trends observed in C-peptide decline in the UK Genetic Resource Investigating Diabetes (UK GRID) cohort (N = 4,079), with ß-cell loss in pancreas donors from the network for Pancreatic Organ donors with Diabetes (nPOD) biobank and the Exeter Archival Diabetes Biobank (EADB) (combined N = 235), stratified by recently reported age at diagnosis endotypes (<7, 7-12, ≥13 years) across increasing diabetes durations. The proportion of individuals with detectable C-peptide declined beyond the first year after diagnosis, but this was most marked in the youngest age group (<1-year duration: age <7 years: 18 of 20 [90%], 7-12 years: 107 of 110 [97%], ≥13 years: 58 of 61 [95%] vs. 1-5 years postdiagnosis: <7 years: 172 of 522 [33%], 7-12 years: 604 of 995 [61%], ≥13 years: 225 of 289 [78%]). A similar profile was observed in ß-cell loss, with those diagnosed at younger ages experiencing more rapid loss of islets containing insulin-positive (insulin+) ß-cells <1 year postdiagnosis: age <7 years: 23 of 26 (88%), 7-12 years: 32 of 33 (97%), ≥13 years: 22 of 25 (88%) vs. 1-5 years postdiagnosis: <7 years: 1 of 12 (8.3%), 7-12 years: 7 of 13 (54%), ≥13 years: 7 of 8 (88%). These data should be considered in the planning and interpretation of intervention trials designed to promote ß-cell retention and function.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adolescente , Peptídeo C , Criança , Diabetes Mellitus Tipo 1/genética , Humanos , Lactente , Células Secretoras de Insulina/patologia , Pâncreas/patologia , Doadores de Tecidos
6.
Commun Biol ; 4(1): 1186, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650224

RESUMO

The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.


Assuntos
5'-Nucleotidase/genética , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linfócitos T Reguladores/metabolismo , 5'-Nucleotidase/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino
7.
Nat Genet ; 53(7): 962-971, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127860

RESUMO

We report the largest and most diverse genetic study of type 1 diabetes (T1D) to date (61,427 participants), yielding 78 genome-wide-significant (P < 5 × 10-8) regions, including 36 that are new. We define credible sets of T1D-associated variants and show that they are enriched in immune-cell accessible chromatin, particularly CD4+ effector T cells. Using chromatin-accessibility profiling of CD4+ T cells from 115 individuals, we map chromatin-accessibility quantitative trait loci and identify five regions where T1D risk variants co-localize with chromatin-accessibility quantitative trait loci. We highlight rs72928038 in BACH2 as a candidate causal T1D variant leading to decreased enhancer accessibility and BACH2 expression in T cells. Finally, we prioritize potential drug targets by integrating genetic evidence, functional genomic maps and immune protein-protein interactions, identifying 12 genes implicated in T1D that have been targeted in clinical trials for autoimmune diseases. These findings provide an expanded genomic landscape for T1D.


Assuntos
Alelos , Mapeamento Cromossômico , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Variação Genética , Genômica , Autoimunidade/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Descoberta de Drogas , Expressão Gênica , Genômica/métodos , Humanos , Terapia de Alvo Molecular , Mapeamento de Interação de Proteínas
8.
Wellcome Open Res ; 6: 149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35509371

RESUMO

Background: The characterisation of the peripheral immune system in the autoimmune disease systemic lupus erythematosus (SLE) at the single-cell level has been limited by the reduced sensitivity of current whole-transcriptomic technologies. Here we employ a targeted single-cell multi-omics approach, combining protein and mRNA quantification, to generate a high-resolution map of the T lymphocyte and natural killer (NK) cell populations in blood from SLE patients. Methods: We designed a custom panel to quantify the transcription of 534 genes in parallel with the expression of 51 surface protein targets using the BD Rhapsody AbSeq single-cell system. We applied this technology to profile 20,656 T and NK cells isolated from peripheral blood from an SLE patient with a type I interferon (IFN)-induced gene expression signature (IFN hi), and an age- and sex- matched IFN low SLE patient and healthy donor. Results: We confirmed the presence of a rare cytotoxic CD4 + T cell (CTL) subset, which was exclusively present in the IFN hi patient. Furthermore, we identified additional alterations consistent with increased immune activation in this patient, most notably a shift towards terminally differentiated CD57 + CD8 + T cell and CD16 + NK dim phenotypes, and the presence of a subset of recently-activated naïve CD4 + T cells. Conclusions: Our results identify IFN-driven changes in the composition and phenotype of T and NK cells that are consistent with a systemic immune activation within the IFN hi patient, and underscore the added resolving power of this multi-omics approach to identify rare immune subsets. Consequently, we were able to find evidence for novel cellular peripheral biomarkers of SLE disease activity, including a subpopulation of CD57 + CD4 + CTLs.

9.
Genome Med ; 12(1): 55, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580776

RESUMO

BACKGROUND: Traditionally, the transcriptomic and proteomic characterisation of CD4+ T cells at the single-cell level has been performed by two largely exclusive types of technologies: single-cell RNA sequencing (scRNA-seq) and antibody-based cytometry. Here, we present a multi-omics approach allowing the simultaneous targeted quantification of mRNA and protein expression in single cells and investigate its performance to dissect the heterogeneity of human immune cell populations. METHODS: We have quantified the single-cell expression of 397 genes at the mRNA level and up to 68 proteins using oligo-conjugated antibodies (AbSeq) in 43,656 primary CD4+ T cells isolated from the blood and 31,907 CD45+ cells isolated from the blood and matched duodenal biopsies. We explored the sensitivity of this targeted scRNA-seq approach to dissect the heterogeneity of human immune cell populations and identify trajectories of functional T cell differentiation. RESULTS: We provide a high-resolution map of human primary CD4+ T cells and identify precise trajectories of Th1, Th17 and regulatory T cell (Treg) differentiation in the blood and tissue. The sensitivity provided by this multi-omics approach identified the expression of the B7 molecules CD80 and CD86 on the surface of CD4+ Tregs, and we further demonstrated that B7 expression has the potential to identify recently activated T cells in circulation. Moreover, we identified a rare subset of CCR9+ T cells in the blood with tissue-homing properties and expression of several immune checkpoint molecules, suggestive of a regulatory function. CONCLUSIONS: The transcriptomic and proteomic hybrid technology described in this study provides a cost-effective solution to dissect the heterogeneity of immune cell populations at extremely high resolution. Unexpectedly, CD80 and CD86, normally expressed on antigen-presenting cells, were detected on a subset of activated Tregs, indicating a role for these co-stimulatory molecules in regulating the dynamics of CD4+ T cell responses.


Assuntos
Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Proteoma , RNA , RNA-Seq , Análise de Célula Única , Transcriptoma
10.
Wellcome Open Res ; 5: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399500

RESUMO

Type 1 diabetes is a common autoimmune disease due to destruction of pancreatic ß cells, resulting in lifelong need for insulin. Evidence suggest that maintaining residual ß-cell function can improve glucose control and reduce risk of hypoglycaemia and vascular complications. Non-clinical, preclinical and some preliminary clinical data suggest that low-dose interleukin-2 (IL-2) therapy could block pancreatic ß cells destruction by increasing the number of functional regulatory T cells (Tregs) that inhibit islet-specific autoreactive effector T cells (Teffs). However, there is lack of data on the effect of low-dose IL-2 in newly diagnosed children and adolescents with T1D as well as lack of specific data on its potential effect on ß-cell function. The ' Interleukin-2 Therapy of Autoimmunity in Diabetes (ITAD)' is a phase 2, multicentre, double-blind, randomised, placebo-controlled trial in children and adolescents (6-18 years; having detectable C-peptide) initiated within 6 weeks of T1D diagnosis. A total of 45 participants will be randomised in a 2:1 ratio to receive either ultra-low dose IL-2 (aldesleukin), at a dose of 0.2 x 10 6 IU/m 2 twice-weekly, given subcutaneously, or placebo, for 6 months. The primary objective is to assess the effects of ultra-low dose aldesleukin administration on endogenous ß-cell function as measured by frequent home dried blood spot (DBS) fasting and post-prandial C-peptide in children and adolescents with newly diagnosed T1D. The secondary objectives are: 1) to assess the efficacy of regular dosing of aldesleukin in increasing Treg levels; 2) to confirm the clinical safety and tolerability of ultra-low dose aldesleukin; 3) to assess changes in the immune system indicating benefit or potential risk for future gains/loss in ß-cell function and immune function; 4) to assess treatment effect on glycaemic control. Trial registration: EudraCT 2017-002126-20 (06/02/2019).

11.
Diabetes Care ; 43(1): 169-177, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558544

RESUMO

OBJECTIVE: Immunohistological analyses of pancreata from patients with type 1 diabetes suggest distinct autoimmune islet ß-cell pathology between those diagnosed at <7 years (<7 group) and those diagnosed at age ≥13 years (≥13 group), with both B- and T-lymphocyte islet inflammation common in children in the <7 group, whereas B cells are rare in the ≥13 group. Based on these observations, we sought to identify differences in genetic susceptibility between these prespecified age-at-diagnosis groups to inform on the etiology of the most aggressive form of type 1 diabetes that initiates in the first years of life. RESEARCH DESIGN AND METHODS: Using multinomial logistic regression models, we tested if known type 1 diabetes loci (17 within the HLA and 55 non-HLA loci) had significantly stronger effect sizes in the <7 group compared with the ≥13 group, using genotype data from 27,071 individuals (18,485 control subjects and 3,121 case subjects diagnosed at <7 years, 3,757 at 7-13 years, and 1,708 at ≥13 years). RESULTS: Six HLA haplotypes/classical alleles and six non-HLA regions, one of which functions specifically in ß-cells (GLIS3) and the other five likely affecting key T-cell (IL2RA, IL10, IKZF3, and THEMIS), thymus (THEMIS), and B-cell development/functions (IKZF3 and IL10) or in both immune and ß-cells (CTSH), showed evidence for stronger effects in the <7 group. CONCLUSIONS: A subset of type 1 diabetes-associated variants are more prevalent in children diagnosed under the age of 7 years and are near candidate genes that act in both pancreatic ß- and immune cells.


Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Sistema Imunitário/metabolismo , Células Secretoras de Insulina/metabolismo , Polimorfismo Genético , Adolescente , Adulto , Idade de Início , Alelos , Autoanticorpos/genética , Autoanticorpos/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Feminino , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Lactente , Recém-Nascido , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Front Immunol ; 10: 2606, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781109

RESUMO

In systemic lupus erythematosus (SLE), perturbed immunoregulation underpins a pathogenic imbalance between regulatory and effector CD4+ T-cell activity. However, to date, the characterization of the CD4+ regulatory T cell (Treg) compartment in SLE has yielded conflicting results. Here we show that patients have an increased frequency of CD4+FOXP3+ cells in circulation owing to a specific expansion of thymically-derived FOXP3+HELIOS+ Tregs with a demethylated FOXP3 Treg-specific demethylated region. We found that the Treg expansion was strongly associated with markers of recent immune activation, including PD-1, plasma concentrations of IL-2 and the type I interferon biomarker soluble SIGLEC-1. Since the expression of the negative T-cell signaling molecule PTPN22 is increased and a marker of poor prognosis in SLE, we tested the influence of its missense risk allele Trp620 (rs2476601C>T) on Treg frequency. Trp620 was reproducibly associated with increased frequencies of thymically-derived Tregs in blood, and increased PD-1 expression on both Tregs and effector T cells (Teffs). Our results support the hypothesis that FOXP3+ Tregs are increased in SLE patients as a consequence of a compensatory mechanism in an attempt to regulate pathogenic autoreactive Teff activity. We suggest that restoration of IL-2-mediated homeostatic regulation of FOXP3+ Tregs by IL-2 administration could prevent disease flares rather than treating at the height of a disease flare. Moreover, stimulation of PD-1 with specific agonists, perhaps in combination with low-dose IL-2, could be an effective therapeutic strategy in autoimmune disease and in other immune disorders.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Receptor de Morte Celular Programada 1/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Autoimunidade , Feminino , Fatores de Transcrição Forkhead , Humanos , Interleucina-2/sangue , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/genética , Masculino , Pessoa de Meia-Idade , Proteína Tirosina Fosfatase não Receptora Tipo 22/imunologia , Risco , Adulto Jovem
13.
Nat Commun ; 10(1): 3216, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324808

RESUMO

Thousands of genetic variants are associated with human disease risk, but linkage disequilibrium (LD) hinders fine-mapping the causal variants. Both lack of power, and joint tagging of two or more distinct causal variants by a single non-causal SNP, lead to inaccuracies in fine-mapping, with stochastic search more robust than stepwise. We develop a computationally efficient multinomial fine-mapping (MFM) approach that borrows information between diseases in a Bayesian framework. We show that MFM has greater accuracy than single disease analysis when shared causal variants exist, and negligible loss of precision otherwise. MFM analysis of six immune-mediated diseases reveals causal variants undetected in individual disease analysis, including in IL2RA where we confirm functional effects of multiple causal variants using allele-specific expression in sorted CD4+ T cells from genotype-selected individuals. MFM has the potential to increase fine-mapping resolution in related diseases enabling the identification of associated cellular and molecular phenotypes.


Assuntos
Autoimunidade/genética , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Genéticos , Alelos , Teorema de Bayes , Linfócitos T CD4-Positivos , Antígeno CTLA-4/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica , Genótipo , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
PLoS Genet ; 15(6): e1008178, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199784

RESUMO

Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-ß mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.


Assuntos
Antígenos CD/genética , Antígenos Ly/genética , Diabetes Mellitus Tipo 1/genética , Pâncreas/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Haplótipos/genética , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Pâncreas/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
15.
J Autoimmun ; 95: 1-14, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30446251

RESUMO

Susceptibility to multiple autoimmune diseases is associated with common gene polymorphisms influencing IL-2 signaling and Treg function, making Treg-specific expansion by IL-2 a compelling therapeutic approach to treatment. As an in vivo IL-2 half-life enhancer we used a non-targeted, effector-function-silent human IgG1 as a fusion protein. An IL-2 mutein (N88D) with reduced binding to the intermediate affinity IL-2Rßγ receptor was engineered with a stoichiometry of two IL-2N88D molecules per IgG, i.e. IgG-(IL-2N88D)2. The reduced affinity of IgG-(IL-2N88D)2 for the IL-2Rßγ receptor resulted in a Treg-selective molecule in human whole blood pSTAT5 assays. Treatment of cynomolgus monkeys with single low doses of IgG-(IL-2N88D)2 induced sustained preferential activation of Tregs accompanied by a corresponding 10-14-fold increase in CD4+ and CD8+ CD25+FOXP3+ Tregs; conditions that had no effect on CD4+ or CD8+ memory effector T cells. The expanded cynomolgus Tregs had demethylated FOXP3 and CTLA4 epigenetic signatures characteristic of functionally suppressive cells. Humanized mice had similar selective in vivo responses; IgG-(IL-2N88D)2 increased Tregs while wild-type IgG-IL-2 increased NK cells in addition to Tregs. The expanded human Tregs had demethylated FOXP3 and CTLA4 signatures and were immunosuppressive. These results describe a next-generation immunotherapy using a long-lived and Treg-selective IL-2 that activates and expands functional Tregsin vivo. Patients should benefit from restored immune homeostasis in a personalized fashion to the extent that their autoimmune disease condition dictates opening up the possibility for remissions and cures.


Assuntos
Doenças Autoimunes/terapia , Imunoglobulina G/imunologia , Imunoterapia/métodos , Interleucina-2/imunologia , Linfotoxina-alfa/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Sítios de Ligação , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Proliferação de Células , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/química , Imunoglobulina G/genética , Interleucina-2/administração & dosagem , Interleucina-2/química , Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/efeitos dos fármacos , Linfotoxina-alfa/administração & dosagem , Linfotoxina-alfa/química , Linfotoxina-alfa/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/imunologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
16.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282826

RESUMO

BACKGROUND: Type 1 diabetes (T1D) results from loss of immune regulation, leading to the development of autoimmunity to pancreatic ß cells, involving autoreactive T effector cells (Teffs). Tregs, which prevent autoimmunity, require IL-2 for maintenance of immunosuppressive functions. Using a response-adaptive design, we aimed to determine the optimal regimen of aldesleukin (recombinant human IL-2) to physiologically enhance Tregs while limiting expansion of Teffs. METHODS: DILfrequency is a nonrandomized, open-label, response-adaptive study of participants, aged 18-70 years, with T1D. The initial learning phase allocated 12 participants to 6 different predefined regimens. Then, 3 cohorts of 8 participants were sequentially allocated dose frequencies, based on repeated interim analyses of all accumulated trial data. The coprimary endpoints were percentage change in Tregs and Teffs and CD25 (α subunit of the IL-2 receptor) expression by Tregs, from baseline to steady state. RESULTS: Thirty-eight participants were enrolled, with thirty-six completing treatment. The optimal regimen to maintain a steady-state increase in Tregs of 30% and CD25 expression of 25% without Teff expansion is 0.26 × 106 IU/m2 (95% CI -0.007 to 0.485) every 3 days. Tregs and CD25 were dose-frequency responsive, Teffs were not. The commonest adverse event was injection site reaction (464 of 694 events). CONCLUSIONS: Using a response-adaptive design, aldesleukin treatment can be optimized. Our methodology can generally be employed to immediately access proof of mechanism, thereby leading to more efficient and safe drug development. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number Register, ISRCTN40319192; ClinicalTrials.gov, NCT02265809. FUNDING: Sir Jules Thorn Trust, the Swiss National Science Foundation, Wellcome, JDRF, and NIHR Cambridge Biomedical Research Centre.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Interleucina-2/análogos & derivados , Linfócitos T Reguladores/efeitos dos fármacos , Adolescente , Adulto , Idoso , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Estudos de Viabilidade , Feminino , Humanos , Interleucina-2/administração & dosagem , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/administração & dosagem , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento , Adulto Jovem
17.
Arthritis Res Ther ; 20(1): 152, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053827

RESUMO

BACKGROUND: The molecular heterogeneity of autoimmune and inflammatory diseases has been one of the main obstacles to the development of safe and specific therapeutic options. Here, we evaluated the diagnostic and clinical value of a robust, inexpensive, immunoassay detecting the circulating soluble form of the monocyte-specific surface receptor sialic acid binding Ig-like lectin 1 (sSIGLEC-1). METHODS: We developed an immunoassay to measure sSIGLEC-1 in small volumes of plasma/serum from systemic lupus erythematosus (SLE) patients (n = 75) and healthy donors (n = 504). Samples from systemic sclerosis patients (n = 99) were studied as an autoimmune control. We investigated the correlation between sSIGLEC-1 and both monocyte surface SIGLEC-1 and type I interferon-regulated gene (IRG) expression. Associations of sSIGLEC-1 with clinical features were evaluated in an independent cohort of SLE patients (n = 656). RESULTS: Plasma concentrations of sSIGLEC-1 strongly correlated with expression of SIGLEC-1 on the surface of blood monocytes and with IRG expression in SLE patients. We found ancestry-related differences in sSIGLEC-1 concentrations in SLE patients, with patients of non-European ancestry showing higher levels compared to patients of European ancestry. Higher sSIGLEC-1 concentrations were associated with lower serum complement component 3 and increased frequency of renal complications in European patients, but not with the SLE Disease Activity Index clinical score. CONCLUSIONS: Our sSIGLEC-1 immunoassay provides a specific and easily assayed marker for monocyte-macrophage activation, and interferonopathy in SLE and other diseases. Further studies can extend its clinical associations and its potential use to stratify patients and as a secondary endpoint in clinical trials.


Assuntos
Biomarcadores/sangue , Interferon-alfa/biossíntese , Lúpus Eritematoso Sistêmico/sangue , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/sangue , Adulto , Idoso , Feminino , Humanos , Imunoensaio/métodos , Lúpus Eritematoso Sistêmico/etnologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/sangue , Nefrite Lúpica/etnologia , Nefrite Lúpica/imunologia , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
18.
J Immunol ; 200(1): 147-162, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158418

RESUMO

We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.


Assuntos
Doenças Autoimunes/genética , Colangite/genética , Diabetes Mellitus/genética , Cirrose Hepática Biliar/genética , Mutação/genética , Receptores de Superfície Celular/genética , Animais , Quimera , Modelos Animais de Doenças , Patrimônio Genético , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Sequências Repetidas Terminais/genética
19.
Genome Biol ; 18(1): 165, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870212

RESUMO

BACKGROUND: Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4+ T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes. RESULTS: Within 4 h, activation of CD4+ T cells invokes changes in histone modifications and enhancer RNA transcription that correspond to altered expression of the interacting genes identified by promoter capture Hi-C. By integrating promoter capture Hi-C data with genetic associations for five autoimmune diseases, we prioritised 245 candidate genes with a median distance from peak signal to prioritised gene of 153 kb. Just under half (108/245) prioritised genes related to activation-sensitive interactions. This included IL2RA, where allele-specific expression analyses were consistent with its interaction-mediated regulation, illustrating the utility of the approach. CONCLUSIONS: Our systematic experimental framework offers an alternative approach to candidate causal gene identification for variants with cell state-specific functional effects, with achievable sample sizes.


Assuntos
Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/imunologia , Mapeamento Cromossômico , Ativação Linfocitária/genética , Regiões Promotoras Genéticas , Doenças Autoimunes/imunologia , Cromatina , Elementos Facilitadores Genéticos , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Transcriptoma
20.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814669

RESUMO

The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA