Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Genomics ; 25(1): 493, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762533

RESUMO

BACKGROUND: Insects rely on sophisticated sensitive chemosensory systems to sense their complex chemical environment. This sensory process involves a combination of odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors (IRs) in the chemosensory system. This study focused on the identification and characterization of these three types of chemosensory receptor genes in two closely related Phthorimaea pest species, Phthorimaea operculella (potato tuber moth) and Phthorimaea absoluta (tomato leaf miner). RESULTS: Based on manual annotation of the genome, we identified a total of 349 chemoreceptor genes from the genome of P. operculella, including 93 OR, 206 GR and 50 IR genes, while for P. absoluta, we identified 72 OR, 122 GR and 46 IR genes. Through phylogenetic analysis, we observed minimal differences in the number and types of ORs and IRs between the potato tuber moth and tomato leaf miner. In addition, we found that compared with those of tomato leaf miners, the gustatory receptor branch of P. operculella has undergone a large expansion, which may be related to P. absoluta having a narrower host range than P. operculella. Through analysis of differentially expressed genes (DEGs) of male and female antennae, we uncovered 45 DEGs (including 32ORs, 9 GRs, and 4 IRs). CONCLUSIONS: Our research provides a foundation for exploring the chemical ecology of these two pests and offers new insights into the dietary differentiation of lepidopteran insects, while simultaneously providing molecular targets for developing environmentally friendly pest control methods based on insect chemoreception.


Assuntos
Evolução Molecular , Mariposas , Filogenia , Receptores Odorantes , Animais , Mariposas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Família Multigênica , Adaptação ao Hospedeiro/genética , Genômica/métodos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Insects ; 15(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535362

RESUMO

(1) Background: Understanding the relationship between community assembly and species coexistence is key to understanding ecosystem diversity. Despite the importance of wood-boring longhorn beetles (Cerambycidae) in forests, factors affecting their population dynamics, species richness, and ecological interactions remain underexplored. (2) Methods: We surveyed cerambycid beetles and plants within five plots each across three transects in tropical rainforests and temperate forests of Yunnan, China, known for its rich biodiversity and varied elevation gradients. We explored a range of analytical tools, including α-diversity comparisons, distance-decay relationships, redundancy analysis, ß-dissimilarity metrics, and various neutral community model analyses. (3) Results: The results revealed a stark contrast between the two forest types: the tropical rainforests hosted 212 Cerambycidae and 135 tree species, whereas the temperate forests had only 16 Cerambycidae and 18 tree species. This disparity was attributed to differences in environmental heterogeneity and dispersal limitations. In temperate forests, pronounced environmental variability leads to steeper distance-decay relationships and reduced α-diversity of Cerambycidae, implying stronger dispersal constraints and weaker plant-beetle associations. Conversely, the more homogenous tropical rainforests exhibited stochastic processes that enhanced Cerambycidae diversity and plant-beetle interactions. (4) Conclusions: Our findings underscore that environmental heterogeneity, dispersal limitations, and host-specificity are pivotal in shaping biodiversity patterns in Cerambycidae, with significant variations across climatic zones.

3.
Annu Rev Entomol ; 69: 239-258, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708417

RESUMO

Since the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.


Assuntos
Besouros , Fraxinus , Animais , Larva , América do Norte
4.
Insects ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38132585

RESUMO

Following infestation by phytophagous insects, changes in the composition and relative proportion of volatile components emitted by plants may be observed. Some phytophagous insects can accurately identify these compounds to locate suitable host plants. We investigated whether herbivore-induced plant volatiles (HIPVs) generated by herbivory on Pistacia chinensis Bunge (Sapindales: Aceraceae) might be semiochemicals for the host location of Batocera horsfieldi Hope (Coleoptera: Cerambycidae). We performed two-choice bioassays (indoor darkroom, inside cages) on plants damaged by adult feeding and intact control plants. Volatiles from these plants were then collected and identified, and the response of adult antennae to these compounds was tested via electroantennography (EAG). The behavioral responses of B. horsfieldi to these compounds were finally assessed using a Y-tube olfactometer. Host plant choice tests show that B. horsfieldi prefers feeding-damaged P. chinensis over healthy trees. In total, 15 compounds were collected from healthy and feeding-damaged P. chinensis, 10 of which were shared in both healthy and feeding-damaged P. chinensis, among which there were significant differences in the quantities of five terpenes, including α-pinene, ß-pinene, α-phellandrene, D-limonene, and ß-ocimene. In EAG assays, the antennae of B. horsfieldi adults responded strongly to (Z)-3-hexen-1-ol, ß-ocimene, 3-carene, γ-terpinene, D-limonene, myrcene, and α-phellandrene. The antennae of B. horsfieldi adults responded in a dose-response manner to these compounds. Y-tube behavioral experiments showed that four compounds attracted mated females ((Z)-3-hexen-1-ol, ß-ocimene, 3-carene, and α-phellandrene), two compounds ((Z)-3-hexen-1-ol and α-phellandrene) attracted males, and adults of both sexes avoided D-limonene. Feeding bioassays showed that (Z)-3-hexen-1-ol and ß-ocimene could promote the feeding of B. horsfieldi and that D-limonene inhibited this response. These results could provide a theoretical basis for developing attractants or repellents for B. horsfieldi.

5.
Insects ; 14(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975964

RESUMO

A mark-release-recapture experiment was conducted to evaluate the orientation of spotted lanternfly (SLF) Lycorma delicatula White (Hemiptera: Fulgoridae) nymphs when released equidistant between two trees. The experiment was repeated weekly for eight weeks in a heavily infested area with mature tree-of-heaven Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae) planted in rows as ornamental street trees in Beijing, China. One tree in each pair received a methyl salicylate lure, and the lure was rotated between trees every week as it aged. Two additional independent variables for each tree were also analyzed: size and SLF population density. Marked-released SLF significantly chose trees with higher SLF population density over trees with lower density populations, and they also chose larger trees significantly more than smaller trees. Population density and tree size were better predictors of attraction than lures, but when those factors were controlled, SLF significantly chose trees with methyl salicylate lures over control trees for the first 4 weeks of lure life. Wild SLF distribution was assessed weekly, revealing strong aggregation in first and second instars that diminished with development to the third and fourth instars. Thus, nymphal SLF aggregate, and orientation is strongly guided by the presence of other SLF and tree size.

6.
Environ Microbiome ; 17(1): 47, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085246

RESUMO

BACKGROUND: The entomopathogenic Beauveria bassiana is a popular fungus used to control the Japanese pine sawyer, Monochamus alternatus Hope, the key vector of pine wood nematode (Bursaphelenchus xylophilus) that is the causal agent of pine wilt disease, resulting in devastating losses of pines in China and Portugal. However, recent studies have demonstrated that some insect-associated bacteria might decrease fungal toxicity and further undermine its biological control efficacy against M. alternatus. Thus, it is of great significance to uncover whether and how associated bacteria of M. alternatus become involved in the infection process of B. bassiana. RESULTS: Here, we show that axenic M. alternatus larvae died significantly faster than non-axenic larvae infected by four increasing concentrations of B. bassiana spores (Log-rank test, P < 0.001). The infection of B. bassiana significantly changed the richness and structure of the beetle-associated bacterial community both on the cuticle and in the guts of M. alternatus; meanwhile, the abundance of Pseudomonas and Serratia bacteria were significantly enriched as shown by qPCR. Furthermore, these two bacteria genera showed a strong inhibitory activity against B. bassiana (One-way ANOVA, P < 0.001) by reducing the fungal conidial germination and growth rather than regulating host immunity. CONCLUSIONS: This study highlights the role of insect-associated bacteria in the interaction between pest insects and entomopathogenic fungi, which should be taken into consideration when developing microbial-based pest control strategies.

7.
Insects ; 12(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805014

RESUMO

The Cerambycidae comprise a large and ecologically important family of wood-boring beetles. The purpose of this study was to examine the effectiveness of a generic lure as a potential monitoring tool. Working in a subtropical forest in southwest China, we set traps baited with generic lures at ground level (1 m) and canopy height (~18 m) across 22 randomly located forest plots (12 regenerating forest, 10 mature forest). Three stations were established per plot and each plot was trapped for 7 days in May-June 2013. In total, 4541 beetles of 71 species were caught, including 26 species with 10 or more individuals. We used Hierarchical Modeling of Species Communities (HMSC) to analyze the data and produced informative models for 18 species, showing that trap height, slope, elevation, and leaf-area index were important determinants of cerambycid distribution. Our results demonstrate the potential for using generic lures to detect and monitor cerambycid populations, both for regulatory purposes and for the study of cerambycid beetle ecology. Further research should focus on refining lure blends, and on repeated sampling to determine temporal and spatial dynamics of cerambycid communities.

8.
Insect Sci ; 28(4): 1087-1102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32443173

RESUMO

Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.


Assuntos
Besouros , Galectinas/metabolismo , Evasão da Resposta Imune , Rabditídios/patogenicidade , Animais , Bactérias , Besouros/imunologia , Besouros/parasitologia , Vetores de Doenças , Galectinas/genética , Genes de Insetos , Interações Hospedeiro-Parasita , Imunidade , Monofenol Mono-Oxigenase/metabolismo , Doenças das Plantas/parasitologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Rabditídios/microbiologia , Simbiose
9.
Insect Sci ; 28(1): 203-214, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31944573

RESUMO

Intrasexual selection occurs in male-male competition over access to females and usually results in the larger male winning. While much research has documented that size matters, little is known about how the larger male wins. Dendroctonus valens is an aggregating monogamous bark beetle in which males have large variation in body size and display intense competition over females. Behavioral observation showed two males fight each other within the gallery by pushing/shoving and stridulated more when two males encountered each other. Experiments using two different-sized males synchronously competing showed that larger males won 95% of contests. Reciprocal displacement experiments using muted and intact males of different or equal size were used to simulate male-male competition. Larger males displaced the smaller resident male in 90% of contests, while smaller males prevailed over larger residents in 6.7% of contests. With both males silenced, larger males displaced smaller males in 80% of contests, while smaller males prevailed in 8% of contests. Further experiments using equal-sized males showed aggressive sound-emitting males displaced muted males in 67% of contests, yet intact males displaced other intact males in only 37.5% of contests. Sound analysis showed sound pressure level is an honest signal of body size and males chose soft sounds over loud aggressive sounds in assays. Therefore, D. valens males have evolved dual behaviors, fighting and aggressive sounds associated with body size, to assess rivals to compete for a partner, gaining insights in male-male competition for this species and for other animals.


Assuntos
Som , Vocalização Animal , Gorgulhos/fisiologia , Agressão , Animais , Tamanho Corporal , Comportamento Competitivo , Masculino
10.
Integr Zool ; 16(6): 893-907, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33264496

RESUMO

Pheromones are communication chemicals and regulatory signals used by animals and represent unique tools for organisms to mediate behaviors and make "decisions" to maximize their fitness. Phenotypic plasticity refers to the innate capacity of a species to tolerate a greater breadth of environmental conditions across which it adapts to improve its survival, reproduction, and fitness. The pinewood nematode, Bursaphelenchus xylophilus, an invasive nematode species, was accidentally introduced from North America into Japan, China, and Europe; however, few studies have investigated its pheromones and phenotypic plasticity as a natural model. Here, we demonstrated a novel phenomenon, in which nematodes under the condition of pheromone presence triggered increased reproduction in invasive strains (JP1, JP2, CN1, CN2, EU1, and EU2), while it simultaneously decreased reproduction in native strains (US1 and US2). The bidirectional effect on fecundity, mediated by presence/absence of pheromones, is henceforth termed pheromone-regulative reproductive plasticity (PRRP). We further found that synthetic ascaroside asc-C5 (ascr#9), the major pheromone component, plays a leading role in PRRP and identified 2 candidate receptor genes, Bxydaf-38 and Bxysrd-10, involved in perceiving asc-C5. These results suggest that plasticity of reproductive responses to pheromones in pinewood nematode may increase its fitness in novel environments following introduction. This opens up a new perspective for invasion biology and presents a novel strategy of invasion, suggesting that pheromones, in addition to their traditional roles in chemical signaling, can influence the reproductive phenotype among native and invasive isolates. In addition, this novel mechanism could broadly explain, through comparative studies of native and invasive populations of animals, a potential underlying factor behind of the success of other biological invasions.


Assuntos
Espécies Introduzidas , Nematoides/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Feromônios/farmacologia , Animais , Feminino , Regulação da Expressão Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Masculino , Oviposição/fisiologia , Interferência de RNA
11.
BMC Biol ; 18(1): 184, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246464

RESUMO

BACKGROUND: Survival to cold stress in insects living in temperate environments requires the deployment of strategies that lead to physiological changes involved in freeze tolerance or freeze avoidance. These strategies may consist of, for instance, the induction of metabolic depression, accumulation of cryoprotectants, or the production of antifreeze proteins, however, little is known about the way such mechanisms are regulated and the signals involved in their activation. Ascarosides are signaling molecules usually known to regulate nematode behavior and development, whose expression was recently found to relate to thermal plasticity in the Japanese pine sawyer beetle Monochamus alternatus. Accumulating evidence also points to miRNAs as another class of regulators differentially expressed in response to cold stress, which are predicted to target genes involved in cold adaptation of insects. Here, we demonstrate a novel pathway involved in insect cold acclimation, through miRNA-mediated regulation of ascaroside function. RESULTS: We initially discovered that experimental cold acclimation can enhance the beetle's cold hardiness. Through screening and functional verification, we found miR-31-5p, upregulated under cold stress, significantly contributes to this enhancement. Mechanistically, miR-31-5p promotes production of an ascaroside (asc-C9) in the beetle by negatively targeting the rate-limiting enzyme, acyl-CoA oxidase in peroxisomal ß-oxidation cycles. Feeding experiments with synthetic asc-C9 suggests it may serve as a signal to promote cold acclimation through metabolic depression and accumulation of cryoprotectants with specific gene expression patterns. CONCLUSIONS: Our results point to important roles of miRNA-mediated regulation of ascaroside function in insect cold adaptation. This enhanced cold tolerance may allow higher survival of M. alternatus in winter and be pivotal in shaping its wide distribution range, greatly expanding the threat of pine wilt disease, and thus can also inspire the development of ascaroside-based pest management strategies.


Assuntos
Aclimatação/genética , Temperatura Baixa , Besouros/fisiologia , Glicolipídeos/metabolismo , MicroRNAs/fisiologia , Transdução de Sinais , Animais
12.
PLoS One ; 15(10): e0241115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33125380

RESUMO

Allotraeus asiaticus Schwarzer and Callidiellum villosulum Fairmaire are repeatedly intercepted in wood and wood products all over the world. As two common stem borers of Cunninghamia lanceolata (Lambert) Hooker, to further understanding of the differences in their living habits, behaviors and the mechanism of insect-host chemical communication, we observed the external morphology, number and distribution of antennal sensilla of A. asiaticus and C. villosulum with scanning electron microscopy (SEM), respectively. The results showed that 1st-5th subsegments of the flagellum are spined endoapically in A. asiaticus which is different from the previous report (1st-3rd of the flagellomere). Meanwhile, there were five subsegments on the flagellum of C. villosulum that were clearly specialized as serrated shapes on the 4th-8th flagellomeres. Four types (ten subtypes) of sensilla were both found on the antennae of these two fir longhorn beetles, named Böhm bristle (Bb), sensilla trichodea (ST I and II), sensilla basiconica (SB I, II and III), sensilla chaetica (SCh I, II, III and IV). There is one additional kind of morphological type of sensilla found on the antennae of C. villosulum compared to A. asiaticus which was related to their habit of laying eggs only on dry and injured fir branches, named sensilla campaniformia (SCa). These differences may vary according to their own biological habits. For research purposes, the observed difference in the sensillum distribution and function between the two fir longhorn beetles will greatly facilitate the design of better semiochemical control methods of these insect pests.


Assuntos
Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/fisiologia , Besouros/anatomia & histologia , Besouros/fisiologia , Oviposição , Animais , Comunicação , Feminino , Masculino
13.
ISME J ; 14(11): 2829-2842, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814865

RESUMO

Mutualisms between symbiotic microbes and animals have been well documented, and nutritional relationships provide the foundation for maintaining beneficial associations. The well-studied mutualism between bark beetles and their fungi has become a classic model system in the study of symbioses. Despite the nutritional competition between bark beetles and beneficial fungi in the same niche due to poor nutritional feeding substrates, bark beetles still maintain mutualistic associations with beneficial fungi over time. The mechanism behind this phenomenon, however, remains largely unknown. Here, we demonstrated the bark beetle Dendroctonus valens LeConte relies on the symbiotic bacterial volatile ammonia, as a nitrogen source, to regulate carbohydrate metabolism of its mutualistic fungus Leptographium procerum to alleviate nutritional competition, thereby maintaining the stability of the bark beetle-fungus mutualism. Ammonia significantly reduces competition of L. procerum for carbon resources for D. valens larval growth and increases fungal growth. Using stable isotope analysis, we show the fungus breakdown of phloem starch into D-glucose by switching on amylase genes only in the presence of ammonia. Deletion of amylase genes interferes with the conversion of starch to glucose. The acceleration of carbohydrate consumption and the conversion of starch into glucose benefit this invasive beetle-fungus complex. The nutrient consumption-compensation strategy mediated by tripartite beetle-fungus-bacterium aids the maintenance of this invasive mutualism under limited nutritional conditions, exacerbating its invasiveness with this competitive nutritional edge.


Assuntos
Besouros , Ophiostomatales , Pinus , Gorgulhos , Animais , Simbiose
14.
Insects ; 11(5)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408656

RESUMO

China is implementing an extensive urban forestry plan in Xiongan New Area (XNA), a new city in Hebei province. The city has been designated to serve Beijing's noncapital functions and promote the integration of the broader Beijing-Tianjin-Hebei city-region. As part of a green initiative to minimize environmental impacts and its carbon footprint, a massive urban forestry system has been planned on an unprecedented scale, expected to cover over 600 km2 by 2030. Using science to inform policy, one major goal is to simultaneously minimize impacts of invasive species, while making urban forests more resilient to potential invasive species threats. In this review, we introduce these urban forestry plans such as basic concepts and principles for afforestation, tree species to be planted, delineation of existing pests already established, and expected forest invasive species of concern threatening the new area. Finally, we introduce a framework for invasive pest management strategies in XNA based on a "big data" approach and decision system to minimize impacts of invasive species. This new approach to urban forestry has the potential to become an exemplary global model for urban forestry planning, one that integrates research activities focused on forest health surveys and monitoring with sustainable forestry management. Finally, we provide an overview of the forest health policy required for the design of an unprecedentedly large new urban forest from initial planning to full implementation of an integrated forest management program.

15.
Mol Ecol ; 29(5): 940-955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031723

RESUMO

Gene gain/loss in the context of gene family dynamics plays an important role in evolutionary processes as organisms, particularly invasive species, adapt to new environments or niches. One notable example of this is the duplication of digestive proteases in some parasitic insects and helminths to meet nutritional requirements during animal parasitism. However, whether gene family expansion participates in the adaptation of a plant parasite nematode to its host remains unknown. Here, we compared the newly sequenced genomes of the pinewood nematode, Bursaphelenchus xylophilus, with the genomes of free-living, animal-parasitic and plant-parasitic nematodes. The results showed gene expansions occurring in 51 gene families in B. xylophilus, especially in xenobiotic detoxification pathways, including flavin monooxygenase (FMO), cytochrome P450 (CYP450), short chain dehydrogenase (SDR), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), UDP-glucuronosyltransferase (UGT) and glutathione S-transferase (GST). Although a majority of these expansions probably resulted from gene duplications, nine ADH genes were potentially acquired by horizontal gene transfer (HGT) from fungi. From the transcriptomes of B. xylophilus treated with pine saplings and terpenes, candidate xenobiotic detoxification genes were identified. We propose that host defence chemicals led to gene family expansions of xenobiotic detoxification pathways in B. xylophilus facilitating its survival in pine resin ducts. This study contributes to a better understanding of how a parasitic nematode adapts to its host.


Assuntos
Adaptação Biológica/genética , Família Multigênica , Pinus/parasitologia , Doenças das Plantas/parasitologia , Terpenos/metabolismo , Tylenchida/genética , Animais , Duplicação Gênica , Transferência Genética Horizontal , Genes de Helmintos , Inativação Metabólica , Pinus/química , Transcriptoma
16.
Curr Biol ; 29(13): R619-R620, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287975

RESUMO

Insects have developed special organs, spiracles and the trachea, for oxygen-carbon dioxide exchange to adapt to terrestrial life. The plant-parasitic nematode Bursaphelenchus xylophilus, also known as pine wood nematode (PWN), is vectored by pine sawyer beetles (Monochamus spp.) and causes destructive pine wilt disease, threatening the safety and stability of pine forest ecosystems. Unlike the free-living nematode model species Caenorhabditis elegans, PWN have two distinct life stages (dispersive and propagative), each requiring a unique host relationship ranging from symbiotic/commensal to parasitic. Its symbiotic vector beetle and the pine tree it ultimately infects represent dramatically different host environments within which it needs to successfully maneuver. In Asia, the symbiotic relationship between PWN and its host vector M. alternatus is very close (Figure S1A, see Supplemental Information). Previous studies have shown that third-stage juveniles (JIII) are attracted by specific terpenes produced by mature insect larvae and aggregate around pupal chambers in diseased trees [1] and fourth-stage juveniles (JIV) are attracted to newly eclosed adults by ascarosides the beetles secrete [2]. These JIV, sometimes up to 200,000 per beetle [3], then enter the tracheal system of the newly eclosed beetle, which is full of CO2, for dispersal. Later, those nematodes depart from the spiracles to invade new healthy trees via the feeding wounds on pine branches made during beetles' feeding, thus starting a new cycle of infection, propagation and dispersal. The mechanism mediating the nematodes' departure remains unknown and remains an important unsolved focal point in the PWN life cycle. Our experimental evidence suggests acute CO2 avoidance triggers this behavior.


Assuntos
Dióxido de Carbono/metabolismo , Besouros/parasitologia , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Tylenchida/fisiologia , Animais , Doenças das Plantas/parasitologia
17.
Microbiome ; 6(1): 132, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30053907

RESUMO

BACKGROUND: There is growing evidence that some devastating biotic invasions are facilitated by microbial symbionts. The red turpentine beetle (RTB), an innocuous secondary insect attacking weakened trees in North America, has formed an invasive complex with the fungus Leptographium procerum in China, and this invasive beetle-fungus symbiotic complex is capable of attacking and killing healthy pines. A previous study demonstrated that three Chinese-resident fungi, newly acquired by RTB in China, induce high levels of a phenolic defensive chemical, naringenin, in pines and this invasive beetle-fungus complex is suppressed by elevated levels of naringenin while the beetle uses its gallery as an external detoxification system in which particular yeast-like fungi and bacterial species biodegrade naringenin. However, the functional roles of key microbial players in the symbiosis, contained within the microbiome of the bark beetle gallery, have not been well elucidated. RESULTS: In this report, the symbiotic naringenin-degrading microbiota were found to increase RTB survivorship in the presence of induced host defenses, and potential genes associated with degradation pathways were discovered. While fungi in the gallery microbiota had little involvement in naringenin degradation, bacterial community structure within the beetle gallery was highly correlated to naringenin degrading activity. Phylotypes of the Gram-negative bacterial genus Novosphingobium, which possessed genes involved in degradation pathways, were highly correlated to naringenin degradation activities and RTB associated with an isolated species of this genus acquired protection against naringenin and gained fitness. CONCLUSIONS: Our results demonstrated that symbiotic bacterial community of RTB galleries enhances the survivorship and overall fitness of invasive beetles by degrading the host phenolic naringenin, ultimately overcoming the tree defenses and facilitating the success of the invasive beetle-fungi complex. This dynamic interplay between the invasive insect pest and multipartite microbes suggests a putative mechanism in invasion ecology for mitigating biotic resistance to symbiotic invasion.


Assuntos
Besouros/crescimento & desenvolvimento , Flavanonas/metabolismo , Bactérias Gram-Negativas/fisiologia , Pinus/química , Animais , Proteínas de Bactérias/genética , Besouros/microbiologia , Proteínas Fúngicas/genética , Redes Reguladoras de Genes , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/isolamento & purificação , Microbiota , Filogenia , Pinus/parasitologia , Proteólise , Saccharomycetales/fisiologia , Simbiose
18.
J Chem Ecol ; 44(7-8): 701-710, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30033490

RESUMO

Understanding the coevolution of pathogens and their associated mycoflora depend upon a proper elucidation of the basis of their chemical communication. In the case of pine wilt disease, the mutual interactions between cerambycid beetles, invasive pathogenic nematodes, (Bursaphelenchus xylophilus) and their symbiotic ophiostomatoid fungi provide a unique opportunity to understand the role of small molecules in mediating their chemical communication. Nematodes produce ascarosides, a highly conserved family of small molecules that serve essential functions in nematode biology and ecology. Here we demonstrated that the associated fungi, one of the key natural food resources of pine wood nematodes, can detect and respond to these ascarosides. We found that ascarosides significantly increase the growth of L. pini-densiflorae and Sporothrix sp. 1, which are native fungal species in China that form a symbiotic relationship with pinewood nematodes. Hyphal mass of L. pini-densiflorae increased when treated with asc-C5 compared to other ophiostomatoid species. Field results demonstrated that in forests where higher numbers of PWN were isolated from beetle galleries, L. pini-densiflorae had been prevalent; the same results were confirmed in laboratory studies. Furthermore, when treated with asc-C5, L. pini-densiflorae responded by increasing its production of spores, which leads to a higher likelihood of dispersal by insect vectors, hence explaining the dominance of L. pini-densiflorae over S. sp. 1 in the Tianwang and Nanlu Mountains within the Northern Forestry Centre of China. These findings provide an emphatic representation of coevolution of pine wood nematode and its associated fungi. Our results lay a broader foundation for a better understanding of inter-kingdom mutualisms and the chemical signals that mediate their establishment.


Assuntos
Besouros/fisiologia , Glicolipídeos/metabolismo , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/microbiologia , Tylenchida/fisiologia , Animais , Evolução Biológica , China , Fungos/fisiologia , Insetos Vetores/fisiologia , Simbiose
19.
Front Microbiol ; 9: 464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615996

RESUMO

Since its introduction from North America, Dendroctonus valens LeConte has become a destructive forest pest in China. Although gut aerobic bacteria have been investigated and some are implicated in beetle pheromone production, little is known about the abundance and significance of facultative anaerobic bacteria in beetle gut, especially with regards to effects of oxygen on their role in pheromone production. In this study, we isolated and identified gut bacteria of D. valens adults in an anaerobic environment, and further compared their ability to convert cis-verbenol into verbenone (a multi-functional pheromone of D. valens) under different O2 concentrations. Pantoea conspicua, Enterobacter xiangfangensis, Staphylococcus warneri were the most frequently isolated species among the total of 10 species identified from beetle gut in anaerobic conditions. Among all isolated species, nine were capable of cis-verbenol to verbenone conversion, and the conversion efficiency increased with increased oxygen concentration. This O2-mediated conversion of cis-verbenol to verbenone suggests that gut facultative anaerobes of D. valens might play an important role in the frass, where there is higher exposure to oxygen, hence the higher verbenone production. This claim is further supported by distinctly differential oxygen concentrations between gut and frass of D. valens females.

20.
Sci Rep ; 7(1): 7330, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779104

RESUMO

The longhorned beetle Aromia bungii (Coleoptera: Cerambycidae) is a major pest of stone fruit trees in the genus Prunus, including cherries, apricots, and peaches. Its native range includes China, Korea, Mongolia, and eastern Russia, but it has recently invaded and become established in several countries in Europe, and Japan, and it has been intercepted in shipments coming into North America and Australia. Here, we report the identification of its male-produced aggregation pheromone as the novel compound (E)-2-cis-6,7-epoxynonenal. In field trials in its native range in China, and in recently invaded areas of Japan, the pheromone attracted both sexes of the beetle. Thus, the pheromone should find immediate use in worldwide quarantine surveillance efforts to detect the beetle in incoming shipments. The pheromone will also be a crucial tool in ongoing efforts to eradicate the beetle from regions of the world that it has already invaded.


Assuntos
Besouros/metabolismo , Espécies Introduzidas , Atrativos Sexuais/metabolismo , Animais , Cromatografia Gasosa , Feminino , Espectroscopia de Ressonância Magnética , Masculino , Atrativos Sexuais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA