RESUMO
Background: Infant formula in the United States contains abundant iron, raising health concerns about excess iron intake in early infancy. Objectives: Using a piglet model, we explored the impact of high iron fortification and prebiotic or synbiotic supplementation on iron homeostasis and trace mineral bioavailability. Methods: Twenty-four piglets were stratified and randomly assigned to treatments on postnatal day 2. Piglets were individually housed and received an iron-adequate milk diet (AI), a high-iron milk diet (HI), HI supplemented with 5% inulin (HI with a prebiotic [HIP]), or HIP with an oral gavage of Ligilactobacillus agilis YZ050, an inulin-fermenting strain, every third day (HI with synbiotic [HIS]). Milk was provided in 14 meals daily, mimicking formula feeding in infants. Fecal consistency score and body weight were recorded daily or every other day. Blood and feces were sampled weekly, and tissues collected on postnatal day 29. Data were analyzed using mixed model analysis of variance with repeated measures whenever necessary. Results: Diet did not affect growth. HI increased hemoglobin, hematocrit, and serum iron compared to AI. Despite marginal adequacy, AI upregulated iron transporter genes and maintained satisfactory iron status in most pigs. HI upregulated hepcidin gene expression in liver, caused pronounced tissue iron deposition, and markedly increased colonic and fecal iron. Inulin supplementation, regardless of L. agilis YZ050, not only attenuated hepatic iron overload but also decreased colonic and fecal iron without altering pH or the expression of iron regulatory genes. HI lowered zinc (Zn) and copper (Cu) in the duodenum and liver compared to AI, whereas HIP and HIS further decreased Zn and Cu in the liver and diminished colonic and fecal trace minerals. Conclusions: Early-infancy excessive iron fortification causes iron overload and compromises Zn and Cu absorption. Inulin decreases trace mineral absorption likely by enhancing gut peristalsis and stool frequency.
RESUMO
The present study reports the population structure, genetic admixture and phylogeography of cattle breeds of Sri Lanka viz. Batu Harak, Thawalam and White cattle. Moderately high level of genetic diversity was observed in all the three Sri Lankan zebu cattle breeds. Estimates of inbreeding for Thawalam and White cattle breeds were relatively high with 6.1% and 7.2% respectively. Genetic differentiation of Sri Lankan Zebu (Batu Harak and White cattle) was lowest with Red Sindhi among Indus Valley Zebu while it was lowest with Hallikar among the South Indian cattle. Global F statistics showed 6.5% differences among all the investigated Zebu cattle breeds and 1.9% differences among Sri Lankan Zebu breeds. The Sri Lankan Zebu cattle breeds showed strong genetic relationships with Hallikar cattle, an ancient breed considered to be ancestor for most of the Mysore type draught cattle breeds of South India. Genetic admixture analysis revealed high levels of breed purity in Lanka White cattle with >97% Zebu ancestry. However, significant taurine admixture was observed in Batu Harak and Thawalam cattle. Two major Zebu haplogroups, I1 and I2 were observed in Sri Lankan Zebu with the former predominating the later in all the three breeds. A total of 112 haplotypes were observed in the studied breeds, of which 50 haplotypes were found in Sri Lankan Zebu cattle. Mismatch analysis revealed unimodal distribution in all the three breeds indicating population expansion. The sum of squared deviations (SSD) and raggedness index were non-significant in both the lineages of all the three breeds except for I1 lineage of Thawalam cattle (P<0.01) and I2 lineage of Batu Harak cattle (P<0.05). The results of neutrality tests revealed negative Tajima's D values for both the lineages of Batu Harak (P>0.05) and White cattle (P>0.05) indicating an excess of low frequency polymorphisms and demographic expansion. Genetic dilution of native Zebu cattle germplasm observed in the study is a cause for concern. Hence, it is imperative that national breeding organizations consider establishing conservation units for the three native cattle breeds to maintain breed purity and initiate genetic improvement programs.
Assuntos
Bovinos , Variação Genética , Animais , Bovinos/genética , Variação Genética/genética , Endogamia/estatística & dados numéricos , Filogeografia , Polimorfismo Genético , Sri Lanka , Masculino , FemininoRESUMO
BACKGROUND: Chronic kidney disease of unknown etiology (CKDu) is reported among male paddy farmers in the dry zone of Sri Lanka. The exact cause of this disease remains undetermined. Genetic susceptibility is identified as a major risk factor for CKDu Objectives: In this study, small urinary RNAs were characterized in CKDu patients, healthy endemic and non-endemic controls. Differently expressed urinary miRNAs and their associated pathways were identified in the study population. METHODS: Healthy and diseased male volunteers (n = 9) were recruited from Girandurukotte (endemic) and Mawanella (non-endemic) districts. Urinary small RNAs were purified and sequenced using Illumina MiSeqTM. The sequence trace files were assembled and analyzed. Differentially ex-pressed miRNAs among these three groups were identified and pathway analysis was conducted. RESULTS: The urine samples contained 130,623 sequence reads identified as non-coding RNAs, PIWI-interacting RNAs (piRNA), and miRNAs. Approximately four percent of the total small RNA reads represented miRNA, and 29% represented piRNA. A total of 409 miRNA species were ex-pressed in urine. Interestingly, both diseased and endemic controls population showed significantly low expression of miRNA and piRNA. Regardless of the health status, the endemic population ex-pressed significantly low levels of miR-10a, miR-21, miR-148a, and miR-30a which have been linked with several environmental toxins Conclusion: Significant downregulation of miRNA and piRNA expression in both diseased and healthy endemic samples indicates an epigenetic regulation of CKDu involving genetic and environmental interaction. Further studies of specific miRNA species are required to develop a miRNA panel to identify individuals susceptible to CKDu.
Assuntos
MicroRNAs , Insuficiência Renal Crônica , Humanos , Masculino , MicroRNAs/genética , Doenças Renais Crônicas Idiopáticas , Sri Lanka/epidemiologia , Epigênese Genética , Fatores de Risco , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/epidemiologiaRESUMO
Human milk enriches members of the genus Bifidobacterium in the infant gut. One species, Bifidobacterium pseudocatenulatum, is found in the gastrointestinal tracts of adults and breastfed infants. In this study, B. pseudocatenulatum strains were isolated and characterized to identify genetic adaptations to the breastfed infant gut. During growth on pooled human milk oligosaccharides (HMOs), we observed two distinct groups of B. pseudocatenulatum, isolates that readily consumed HMOs and those that did not, a difference driven by variable catabolism of fucosylated HMOs. A conserved gene cluster for fucosylated HMO utilization was identified in several sequenced B. pseudocatenulatum strains. One isolate, B. pseudocatenulatum MP80, which uniquely possessed GH95 and GH29 α-fucosidases, consumed the majority of fucosylated HMOs tested. Furthermore, B. pseudocatenulatum SC585, which possesses only a single GH95 α-fucosidase, lacked the ability to consume the complete repertoire of linkages within the fucosylated HMO pool. Analysis of the purified GH29 and GH95 fucosidase activities directly on HMOs revealed complementing enzyme specificities with the GH95 enzyme preferring 1-2 fucosyl linkages and the GH29 enzyme favoring 1-3 and 1-4 linkages. The HMO-binding specificities of the family 1 solute-binding protein component linked to the fucosylated HMO gene cluster in both SC585 and MP80 are similar, suggesting differential transport of fucosylated HMO is not a driving factor in each strain's distinct HMO consumption pattern. Taken together, these data indicate the presence or absence of specific α-fucosidases directs the strain-specific fucosylated HMO utilization pattern among bifidobacteria and likely influences competitive behavior for HMO foraging in situ. IMPORTANCE Often isolated from the human gut, microbes from the bacterial family Bifidobacteriaceae commonly possess genes enabling carbohydrate utilization. Isolates from breastfed infants often grow on and possess genes for the catabolism of human milk oligosaccharides (HMOs), glycans found in human breast milk. However, catabolism of structurally diverse HMOs differs between bifidobacterial strains. This study identifies key gene differences between Bifidobacterium pseudocatenulatum isolates that may impact whether a microbe successfully colonizes an infant gut. In this case, the presence of complementary α-fucosidases may provide an advantage to microbes seeking residence in the infant gut. Such knowledge furthers our understanding of how diet drives bacterial colonization of the infant gut.
Assuntos
Bifidobacterium pseudocatenulatum , Leite Humano , Bifidobacterium pseudocatenulatum/metabolismo , Feminino , Humanos , Hidrolases/metabolismo , Lactente , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismoRESUMO
BACKGROUND: Chronic kidney disease of unknown etiology (CKDu) was first recognized in Sri Lanka in the early 1990s, and since then it has reached epidemic levels in the North Central Province of the country. The prevalence of CKDu is reportedly highest among communities that engage in chena and paddy farming, which is most often practiced in the dry zone including the North Central and East Central Provinces of Sri Lanka. Previous studies have suggested varied hypotheses for the etiology of CKDu; however, there is not yet a consensus on the primary risk factors, possibly due to disparate study designs, sample populations, and methodologies. METHODS: The goal of this pilot case-control study was to evaluate the relationships between key demographic, cultural, and occupational variables as risk factors for CKDu, with a primary interest in pesticide exposure both occupationally and through its potential use as an ingredient in brewed kasippu alcohol. An extensive one health focused survey was developed with in cooperation with the Centre for Research, Education, and Training on Kidney Diseases of Sri Lanka. RESULTS: A total of 56 CKDu cases and 54 control individuals were surveyed using a proctored, self-reported questionnaire. Occupational pesticide exposure and alcohol consumption were not found to be significant risk factors for CKDu. However, a statistically significant association with CKDu was observed with chewing betel (adjusted odds ratio [aOR]: 6.11, 95% confidence interval [CI]: 1.93, 19.35), age (aOR: 1.07, 95% CI: 1.02, 1.13), owning a pet dog (aOR: 3.74, 95% CI: 1.38, 10.11), water treatment (aOR: 3.68, 95% CI: 1.09, 12.43) and pests in the house (aOR: 5.81, 95% CI: 1.56, 21.60). CONCLUSIONS: The findings of this study suggest future research should focus on practices associated with chewing betel, potential animal interactions including pests in the home and pets, and risk factors associated with water. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-020-00034-3.
RESUMO
OBJECTIVE: Ribonucleic acids (RNA) are involved in many cellular functions. In general, RNA is made up by only four different ribonucleotides. The modifications of RNA (epitranscriptome) can greatly enhance the structural diversity of RNA, which in turn support some of the RNA functions. To determine whether the epitranscriptome of a specific probiotic is associated with its adaptation to the source of energy, Lactobacillus agilis (YZ050) was selected as a model and its epitranscriptome was profiled and compared by using mass spectrometry. RESULTS: The L. agilis epitranscriptome (minus rRNA modifications) consists of 17 different RNA modifications. By capturing the L. agilis cells during exponential growth, reproducible profiling was achieved. In a comparative study, the standard source of energy (glucose) in the medium was substituted by a prebiotic inulin, and a downward trend in the L. agilis epitranscriptome was detected. This marks the first report on a system-wide variation of a bacterial epitranscriptome that resulted from adapting to an alternative energy source. No correlation was found between the down-regulated RNA modifications and the expression level of corresponding writer genes. Whereas, the expression level of a specific exonuclease gene, RNase J1, was detected to be higher in cells grown on inulin.
Assuntos
Inulina , Probióticos , Lactobacillus/genética , RNARESUMO
Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health.
Assuntos
Disbiose , Leite/metabolismo , Animais , Bovinos , Dieta , Inflamação , Camundongos , Camundongos Obesos , Oligossacarídeos/metabolismo , PermeabilidadeRESUMO
BACKGROUND: Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). Two predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both of which include avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increases adhesion to intestinal cells and increases the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source-glucose, lactose, or HMO-on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. RESULTS: HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both downregulated genes in Caco-2 cells associated with chemokine activity. CONCLUSION: The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics.
Assuntos
Aderência Bacteriana , Bifidobacterium/imunologia , Bifidobacterium/fisiologia , Células CACO-2/imunologia , Células CACO-2/microbiologia , Leite Humano/química , Oligossacarídeos/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Lactose/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Human milk is known to contain several proteases, but little is known about whether these enzymes are active, which proteins they cleave, and their relative contribution to milk protein digestion in vivo. This study analyzed the mass spectrometry-identified protein fragments found in pooled human milk by comparing their cleavage sites with the enzyme specificity patterns of an array of enzymes. The results indicate that several enzymes are actively taking part in the digestion of human milk proteins within the mammary gland, including plasmin and/or trypsin, elastase, cathepsin D, pepsin, chymotrypsin, a glutamyl endopeptidase-like enzyme, and proline endopeptidase. Two proteins were most affected by enzyme hydrolysis: ß-casein and polymeric immunoglobulin receptor. In contrast, other highly abundant milk proteins such as α-lactalbumin and lactoferrin appear to have undergone no proteolytic cleavage. A peptide sequence containing a known antimicrobial peptide is released in breast milk by elastase and cathepsin D.
Assuntos
Digestão , Enzimas/metabolismo , Leite Humano/metabolismo , Perfilação da Expressão Gênica , Humanos , Espectrometria de MassasRESUMO
Human milk lactoferrin (hmLF) is the most abundant glycoprotein present in human milk and displays a broad range of protective functions in the gut of newborn infants. hmLF is N-glycosylated, but little is known about the lactation stage-related development of the glycosylation phenotype. hmLF glycosylation from milk samples from five donors during the first 10 weeks of lactation was assessed and observed to be more diverse than previously reported. During this period dynamic changes in glycosylation were observed corresponding to a decrease in glycosylation in the second week followed by an increase in total glycosylation as well as higher order fucosylation thereafter. Gene expression analysis was performed in milk somatic cells from a sixth subject. It was found that fucosyltransferase expression increased during entire period, whereas expression of genes for the oligosaccharyl transferase complex decreased in the second week. The effect of hmLF glycosylation was examined for the protein's ability to affect bacterial binding to epithelial cells. hmLF significantly inhibited pathogen adhesion and purified hmLF glycans significantly reduced Salmonella invasion of colonic epithelial cells to levels associated with non-invasive deletion mutants. This study indicates that hmLF glycosylation is tightly regulated by gene expression and that glyco-variation is involved in modulating pathogen association.
Assuntos
Interações Hospedeiro-Patógeno , Lactação , Lactoferrina/metabolismo , Leite Humano/metabolismo , Processamento de Proteína Pós-Traducional , Aderência Bacteriana , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Escherichia coli O157/fisiologia , Feminino , Análise de Fourier , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Polissacarídeos/química , Salmonella/fisiologia , Análise de Sequência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
BACKGROUND: Cow milk is a complex bioactive fluid consumed by humans beyond infancy. Even though the chemical and physical properties of cow milk are well characterized, very limited research has been done on characterizing the milk transcriptome. This study performs a comprehensive expression profiling of genes expressed in milk somatic cells of transition (day 15), peak (day 90) and late (day 250) lactation Holstein cows by RNA sequencing. Milk samples were collected from Holstein cows at 15, 90 and 250 days of lactation, and RNA was extracted from the pelleted milk cells. Gene expression analysis was conducted by Illumina RNA sequencing. Sequence reads were assembled and analyzed in CLC Genomics Workbench. Gene Ontology (GO) and pathway analysis were performed using the Blast2GO program and GeneGo application of MetaCore program. RESULTS: A total of 16,892 genes were expressed in transition lactation, 19,094 genes were expressed in peak lactation and 18,070 genes were expressed in late lactation. Regardless of the lactation stage approximately 9,000 genes showed ubiquitous expression. Genes encoding caseins, whey proteins and enzymes in lactose synthesis pathway showed higher expression in early lactation. The majority of genes in the fat metabolism pathway had high expression in transition and peak lactation milk. Most of the genes encoding for endogenous proteases and enzymes in ubiquitin-proteasome pathway showed higher expression along the course of lactation. CONCLUSIONS: This is the first study to describe the comprehensive bovine milk transcriptome in Holstein cows. The results revealed that 69% of NCBI Btau 4.0 annotated genes are expressed in bovine milk somatic cells. Most of the genes were ubiquitously expressed in all three stages of lactation. However, a fraction of the milk transcriptome has genes devoted to specific functions unique to the lactation stage. This indicates the ability of milk somatic cells to adapt to different molecular functions according to the biological need of the animal. This study provides a valuable insight into the biology of lactation in the cow, as well as many avenues for future research on the bovine lactome.
Assuntos
Células Epiteliais/metabolismo , Leite/citologia , Transcriptoma , Animais , Bovinos , Células Epiteliais/enzimologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA/isolamento & purificação , Análise de Sequência de RNA , Ubiquitina/genética , Ubiquitina/metabolismoRESUMO
Sialic acid, a nine-carbon sugar acid usually is present in the non-reducing terminal position of free oligosaccharides and glycoconjugates. Sialylated conjugates in mammals perform important roles in cellular recognition, signaling, host-pathogen interaction and neuronal development. Metabolism of sialylated conjugates involves a complex pathway consisting of enzymes distributed among the different compartments in the cell. These enzymes are encoded by 32 genes diversely distributed throughout the mammalian genome. Genetic variants in some of these genes are associated with embryonic lethality and abnormal phenotypes in mice and neuromuscular diseases, carcinomas and immune-mediated diseases in humans. In humans, the CMP-NeuAc-hydroxylase (CMAH) enzyme is inactivated due to a deletion mutation in the encoded enzyme. This lack of Neu5Gc phenotype makes humans unique among mammals. This review focuses on genes encoding enzymes in sialic acid metabolism pathways in mammalian cells with special emphasis on the human, mouse and cow.
Assuntos
Ácidos Siálicos/metabolismo , Animais , Bovinos , Mamíferos , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácidos Siálicos/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (nâ=â32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (nâ=â12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.
Assuntos
Bovinos/genética , Perfilação da Expressão Gênica , Leite/química , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Análise de Sequência de RNA/métodos , Animais , Feminino , Fucose/metabolismo , Regulação da Expressão Gênica , Glicosilação , Lactação/genética , Mamíferos/genética , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Ácido N-Acetilneuramínico/metabolismoRESUMO
High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.