Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958978

RESUMO

Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Morte Celular , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo
2.
Biomedicines ; 11(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37626736

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder globally. In people aged 65 and older, it is estimated that 1 in 9 currently live with the disease. With aging being the greatest risk factor for disease onset, the physiological, social and economic burden continues to rise. Thus, AD remains a public health priority. Since 2007, genome-wide association studies (GWAS) have identified over 80 genomic loci with variants associated with increased AD risk. Although some variants are beginning to be characterized, the effects of many risk loci remain to be elucidated. One advancement which may help provide a patient-focused approach to tackle this issue is the application of gene editing technology and human-induced pluripotent stem cells (hiPSCs). The relatively non-invasive acquisition of cells from patients with known AD risk loci may provide important insights into the pathological role of these risk variants. Of the risk genes identified, many have been associated with the immune system, including ABCA7, CLU, MEF2C, PICALM and TREM2-genes known to be highly expressed in microglia. This review will detail the potential of using hiPSC-derived microglia to help clarify the role of immune-associated genetic risk variants in AD.

3.
Life (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36556373

RESUMO

Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.

4.
Pain ; 163(5): e642-e653, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34629389

RESUMO

ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.


Assuntos
Cálcio , Prurido , Animais , Cálcio/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Interleucinas/efeitos adversos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos , Dor/metabolismo , Prurido/metabolismo
5.
FEBS J ; 289(7): 1801-1822, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811735

RESUMO

Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglia/metabolismo , Receptores de Formil Peptídeo/genética
6.
Oxid Med Cell Longev ; 2020: 2139192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617132

RESUMO

Microglial inflammatory activity is thought to be a major contributor to the pathology of neurodegenerative conditions such as Alzheimer's disease (AD), and strategies to restrain their behaviour are under active investigation. Classically, anti-inflammatory approaches are aimed at suppressing proinflammatory mediator production, but exploitation of inflammatory resolution, the endogenous process whereby an inflammatory reaction is terminated, has not been fully investigated as a therapeutic approach in AD. In this study, we sought to provide proof-of-principle that the major proresolving actor, formyl peptide receptor 2, Fpr2, could be targeted to reverse microglial activation induced by the AD-associated proinflammatory stimulus, oligomeric ß-amyloid (oAß). The immortalised murine microglial cell line BV2 was employed as a model system to investigate the proresolving effects of the Fpr2 ligand QC1 upon oAß-induced inflammatory, oxidative, and metabolic behaviour. Cytotoxic behaviour of BV2 cells was assessed through the use of cocultures with retinoic acid-differentiated human SH-SY5Y cells. Stimulation of BV2 cells with oAß at 100 nM did not induce classical inflammatory marker production but did stimulate production of reactive oxygen species (ROS), an effect that could be reversed by subsequent treatment with the Fpr2 ligand QC1. Further investigation revealed that oAß-induced ROS production was associated with NADPH oxidase activation and a shift in BV2 cell metabolic phenotype, activating the pentose phosphate pathway and NADPH production, changes that were again reversed by QC1 treatment. Microglial oAß-stimulated ROS production was sufficient to induce apoptosis of bystander SH-SY5Y cells, an effect that could be prevented by QC1 treatment. In this study, we provide proof-of-concept data that indicate exploitation of the proresolving receptor Fpr2 can reverse damaging oAß-induced microglial activation. Future strategies that are aimed at restraining neuroinflammation in conditions such as AD should examine proresolving actors as a mechanism to harness the brain's endogenous healing pathways and limit neuroinflammatory damage.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Microglia/patologia , Receptores de Formil Peptídeo/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Antioxidantes/metabolismo , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Formil Peptídeo/agonistas
7.
Artigo em Inglês | MEDLINE | ID: mdl-31297095

RESUMO

Local production of estrogen rapidly follows brain tissue injury, but the role this hormone plays in regulating the response to neural damage or in the modulation of mediators regulating inflammation is in many ways unclear. Using the murine BV2 microglia model as well as primary microglia from wild-type and annexin A1 (AnxA1) null mice, we have identified two related mechanisms whereby estradiol can modulate microglial behavior in a receptor specific fashion. Firstly, estradiol, via estrogen receptor ß (ERß), enhanced the phagocytic clearance of apoptotic cells, acting through increased production and release of the protein AnxA1. Secondly, stimulation of either ERß or the G protein coupled estrogen receptor GPER promoted the adoption of an anti-inflammatory/pro-resolving phenotype, an action similarly mediated through AnxA1. Together, these data suggest the hypothesis that locally produced estrogen acts through AnxA1 to exert powerful pro-resolving actions, controlling and limiting brain inflammation and ultimately protecting this highly vulnerable organ. Given the high degree of receptor selectivity in evoking these responses, we suggest that the use of selective estrogen receptor ligands may hold therapeutic promise in the treatment of neuroinflammation, avoiding unwanted generalized effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA