Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 140(11): 1569-1579, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33606121

RESUMO

Retinitis pigmentosa (RP) is a blinding eye disease affecting nearly two million people worldwide. Dogs are affected with a similar illness termed progressive retinal atrophy (PRA). Lapponian herders (LHs) are affected with several types of inherited retinal dystrophies, and variants in PRCD and BEST1 genes have been associated with generalized PRA and canine multifocal retinopathy 3 (cmr3), respectively. However, all retinal dystrophy cases in LHs are not explained by these variants, indicating additional genetic causes of disease in the breed. We collected DNA samples from 10 PRA affected LHs, with known PRCD and BEST1 variants excluded, and 34 unaffected LHs. A genome-wide association study identified a locus on CFA20 (praw = 2.4 × 10-7, pBonf = 0.035), and subsequent whole-genome sequencing of an affected LH revealed a missense variant, c.3176G>A, in the intraflagellar transport 122 (IFT122) gene. The variant was also found in Finnish Lapphunds, in which its clinical relevancy needs to be studied further. The variant interrupts a highly conserved residue, p.(R1059H), in IFT122 and likely impairs its function. Variants in IFT122 have not been associated with retinal degeneration in mammals, but the loss of ift122 in zebrafish larvae impaired opsin transport and resulted in progressive photoreceptor degeneration. Our study establishes a new spontaneous dog model to study the role of IFT122 in RP biology, while the affected breed will benefit from a genetic test for a recessive condition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Doenças do Cão/genética , Mutação de Sentido Incorreto , Degeneração Retiniana/veterinária , Retinose Pigmentar/genética , Animais , Cruzamento , Cães , Feminino , Genes Recessivos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Linhagem , Células Fotorreceptoras de Vertebrados/patologia , Polimorfismo de Nucleotídeo Único , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Transcriptoma , Sequenciamento Completo do Genoma
2.
PLoS Genet ; 16(3): e1008659, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150541

RESUMO

Retinitis pigmentosa (RP) is the leading cause of blindness with nearly two million people affected worldwide. Many genes have been implicated in RP, yet in 30-80% of the RP patients the genetic cause remains unknown. A similar phenotype, progressive retinal atrophy (PRA), affects many dog breeds including the Miniature Schnauzer. We performed clinical, genetic and functional experiments to identify the genetic cause of PRA in the breed. The age of onset and pattern of disease progression suggested that at least two forms of PRA, types 1 and 2 respectively, affect the breed, which was confirmed by genome-wide association study that implicated two distinct genomic loci in chromosomes 15 and X, respectively. Whole-genome sequencing revealed a fully segregating recessive regulatory variant in type 1 PRA. The associated variant has a very recent origin based on haplotype analysis and lies within a regulatory site with the predicted binding site of HAND1::TCF3 transcription factor complex. Luciferase assays suggested that mutated regulatory sequence increases expression. Case-control retinal expression comparison of six best HAND1::TCF3 target genes were analyzed with quantitative reverse-transcriptase PCR assay and indicated overexpression of EDN2 and COL9A2 in the affected retina. Defects in both EDN2 and COL9A2 have been previously associated with retinal degeneration. In summary, our study describes two genetically different forms of PRA and identifies a fully penetrant variant in type 1 form with a possible regulatory effect. This would be among the first reports of a regulatory variant in retinal degeneration in any species, and establishes a new spontaneous dog model to improve our understanding of retinal biology and gene regulation while the affected breed will benefit from a reliable genetic testing.


Assuntos
Doenças do Cão/genética , Degeneração Retiniana/genética , Retinose Pigmentar/genética , Animais , Estudos de Casos e Controles , Colágeno Tipo IX/genética , Colágeno Tipo IX/metabolismo , Cães , Endotelina-2/genética , Endotelina-2/metabolismo , Feminino , Mutação da Fase de Leitura/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Masculino , Modelos Animais , Mutação/genética , Linhagem , Fenótipo , Retina/metabolismo , Retinose Pigmentar/metabolismo
3.
Mol Vis ; 16: 2791-804, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21197113

RESUMO

PURPOSE: Mutations in bestrophin 1 (BEST1) are associated with a group of retinal disorders known as bestrophinopathies in man and canine multifocal retinopathies (cmr) in the dog. To date, the dog is the only large animal model suitable for the complex characterization and in-depth studies of Best-related disorders. In the first report of cmr, the disease was described in a group of mastiff-related breeds (cmr1) and the Coton de Tulear (cmr2). Additional breeds, e.g., the Lapponian herder (LH) and others, subsequently were recognized with similar phenotypes, but linked loci are unknown. Analysis of the BEST1 gene aimed to identify mutations in these additional populations and extend our understanding of genotype-phenotype associations. METHODS: Animals were subjected to routine eye exams, phenotypically characterized, and samples were collected for molecular studies. Known BEST1 mutations were assessed, and the canine BEST1 coding exons were amplified and sequenced in selected individuals that exhibited a cmr compatible phenotype but that did not carry known mutations. Resulting sequence changes were genotyped in several different breeds and evaluated in the context of the phenotype. RESULTS: Seven novel coding variants were identified in exon 10 of cBEST1. Two linked mutations were associated with cmr exclusive to the LH breed (cmr3). Two individuals of Jämthund and Norfolk terrier breeds were heterozygous for two conservative changes, but these were unlikely to have disease-causing potential. Another three substitutions were found in the Bernese mountain dog that were predicted to have a deleterious effect on protein function. Previously reported mutations were excluded from segregation in these populations, but cmr1 was confirmed in another mastiff-related breed, the Italian cane corso. CONCLUSIONS: A third independent canine model for human bestrophinopathies has been established in the LH breed. While exhibiting a phenotype comparable to cmr1 and cmr2, the novel cmr3 mutation is predicted to be based on a distinctly different molecular mechanism. So far cmr2 and cmr3 are exclusive to a single dog breed each. In contrast, cmr1 is found in multiple related breeds. Additional sequence alterations identified in exon 10 of cBEST1 in other breeds exhibit potential disease-causing features. The inherent genetic and phenotypic variation observed with retinal disorders in canines is complicated further by cmr3 being one of four distinct genetic retinal traits found to segregate in LH. Thus, a combination of phenotypic, molecular, and population analysis is required to establish a strong phenotype-genotype association. These results indicate that cmr has a larger impact on the general dog population than was initially suspected. The complexity of these models further confirms the similarity to human bestrophinopathies. Moreover, analyses of multiple canine models will provide additional insight into the molecular basis underlying diseases caused by mutations in BEST1.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/genética , Mutação/genética , Doenças Retinianas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cruzamento , Análise Mutacional de DNA , Cães , Proteínas do Olho/química , Feminino , Fundo de Olho , Estudos de Associação Genética , Genoma/genética , Masculino , Modelos Biológicos , Dados de Sequência Molecular , Linhagem , Fenótipo , Retina/patologia
4.
BMC Vet Res ; 3: 14, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17623091

RESUMO

BACKGROUND: Dogs have the second largest number of genetic diseases, after humans. Among the diseases present in dogs, progressive retinal atrophy has been reported in more than a hundred breeds. In some of them, the mutation has been identified and genetic tests have allowed the identification of carriers, thus enabling a drastic reduction in the incidence of the disease. The Finnish lapphund is a dog breed presenting late-onset progressive retinal atrophy for which the disease locus remains unknown. RESULTS: In this study we mapped the progressive retinal atrophy locus in the Finnish lapphund using a DNA pooling approach, assuming that all affected dogs within the breed share the same identical-by descent-mutation as the cause of the disease (genetic homogeneity). Autosomal recessive inheritance was also assumed, after ruling out, from pedigree analysis, dominant and X-linked inheritance. DNA from 12 Finnish lapphund cases was mixed in one pool, and DNA from 12 first-degree relatives of these cases was mixed to serve as the control pool. The 2 pools were tested with 133 microsatellite markers, 3 of which showed a shift towards homozygosity in the cases. Individual genotyping with these 3 markers confirmed homozygosity for the GALK1 microsatellite only (chromosome 9). Further individual genotyping with additional samples (4 cases and 59 controls) confirmed the association between this marker and the disease locus (p < 0.001). Closely related to this breed are the Swedish lapphund and the Lapponian herder for which a small number of retinal atrophy cases have been reported. Swedish lapphund cases, but not Lapponian herder cases, had the same GALK1 microsatellite genotype as Finnish lapphund cases. CONCLUSION: The locus for progressive rod-cone degeneration is known to be close to the GALK1 locus, on the telomeric region of chromosome 9, where the retinal atrophy locus of the Finnish lapphund has been mapped. This suggests that the disease in this breed, as well as in the Swedish lapphund, may correspond to progressive rod-cone degeneration. This would increase the number of known dog breeds having this particular form of progressive retinal atrophy.


Assuntos
Atrofia/veterinária , Centrômero/genética , Mapeamento Cromossômico/veterinária , Cromossomos de Mamíferos/genética , Doenças do Cão/genética , Doenças Retinianas/veterinária , Animais , Atrofia/genética , DNA/análise , DNA/genética , Cães , Feminino , Finlândia , Genótipo , Masculino , Repetições de Microssatélites , Mutação , Linhagem , Doenças Retinianas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA