Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mar Pollut Bull ; 193: 115190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336043

RESUMO

Artificial Light at Night (ALAN) alters cycles of day and night, potentially modifying species' behavior. We assessed whether exposure to ALAN influences decision-making (directional swimming) in an intertidal rockfish (Girella laevisifrons) from the Southeastern Pacific. Using a Y-maze, we examined if exposure to ALAN or natural day/night conditions for one week affected the number of visits and time spent in three Y-maze compartments: dark and lit arms ("safe" and "risky" conditions, respectively) and a neutral "non-decision" area. The results showed that fish maintained in natural day/night conditions visited and spent more time in the dark arm, regardless of size. Instead, fish exposed to ALAN visited and spent more time in the non-decision area and their response was size-dependent. Hence, prior ALAN exposure seemed to disorient or reduce the ability of rock fish to choose dark conditions, deemed the safest for small fish facing predators or other potential threats.


Assuntos
Bass , Poluição Luminosa , Animais , Fotoperíodo , Comportamento Animal/fisiologia , Natação , Luz
2.
Sci Total Environ ; 872: 162086, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36764536

RESUMO

Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.


Assuntos
Ecossistema , Poluição Luminosa , Chile , Estações do Ano , Luz
3.
Ambio ; 51(2): 370-382, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34628602

RESUMO

Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.


Assuntos
Ecossistema , Sedimentos Geológicos , Regiões Árticas , Mudança Climática , Camada de Gelo
4.
Sci Total Environ ; 780: 146568, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774285

RESUMO

Artificial light at night (ALAN) is a growing source of stress for organisms and communities worldwide. These include species associated with sandy beaches, which consume and process stranded seaweeds (wrack) in these ecosystems. This study assessed the influence of ALAN on the activity and feeding behaviour of Americorchestia longicornis, a prominent talitrid amphipod living in sandy beaches of Prince Edward Island, Atlantic Canada. First, two parallel field surveys were conducted to document the natural daily cycle of activity of this species. Then, three related hypotheses were used to assess whether ALAN disrupts its locomotor activity, whether that disruption lasts over time, and whether it affects the feeding behaviour and growth of the amphipods. Tanks equipped with actographs recorded amphipod locomotor activity for ~7 days and then its potential recovery (after ALAN removal) for additional ~3 days. Separate tanks were used to compare amphipod food consumptions rates, absorption efficiency and growth rates under natural daylight / night (control) and altered conditions (ALAN). The results of these manipulations provide support to two of the three hypotheses proposed and indicate that ALAN was temporarily detrimental for (i.e. significantly reduced) the surface activity, consumption rates and absorption efficiency of the amphipods, whereas growth rates remained unaffected. The results also rejected the remaining hypothesis and suggest that the plasticity exhibited by these amphipods confer them the capacity to recover their natural rhythm of activity shortly after ALAN was removed from the system. Combined, these results suggest that ALAN has a strong, albeit temporary, influence upon the abundant populations of A. longicornis. Such influence has implications for the ecosystem role played by these amphipods as consumers and processors of the subsidy of stranded seaweeds entering these ecosystems.


Assuntos
Anfípodes , Animais , Canadá , Ecossistema , Poluição Ambiental , Comportamento Alimentar , Luz
5.
Environ Pollut ; 280: 116895, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784562

RESUMO

The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.


Assuntos
Braquiúros , Gastrópodes , Animais , Sinais (Psicologia) , Ecossistema , Comportamento Predatório
6.
J Exp Biol ; 223(Pt 8)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300042

RESUMO

Regulation of extracellular acid-base balance, while maintaining energy metabolism, is recognised as an important aspect when defining an organism's sensitivity to environmental changes. This study investigated the haemolymph buffering capacity and energy metabolism (oxygen consumption, haemolymph [l-lactate] and [protein]) in early benthic juveniles (carapace length <40 mm) of the European lobster, Homarus gammarus, exposed to elevated temperature and PCO2 At 13°C, H. gammarus juveniles were able to fully compensate for acid-base disturbances caused by the exposure to elevated seawater PCO2  at levels associated with ocean acidification and carbon dioxide capture and storage (CCS) leakage scenarios, via haemolymph [HCO3-] regulation. However, metabolic rate remained constant and food consumption decreased under elevated PCO2 , indicating reduced energy availability. Juveniles at 17°C showed no ability to actively compensate haemolymph pH, resulting in decreased haemolymph pH particularly under CCS conditions. Early benthic juvenile lobsters at 17°C were not able to increase energy intake to offset increased energy demand and therefore appear to be unable to respond to acid-base disturbances due to increased PCO2 at elevated temperature. Analysis of haemolymph metabolites suggests that, even under control conditions, juveniles were energetically limited. They exhibited high haemolymph [l-lactate], indicating recourse to anaerobic metabolism. Low haemolymph [protein] was linked to minimal non-bicarbonate buffering and reduced oxygen transport capacity. We discuss these results in the context of potential impacts of ongoing ocean change and CCS leakage scenarios on the development of juvenile H. gammarus and future lobster populations and stocks.


Assuntos
Dióxido de Carbono , Nephropidae , Equilíbrio Ácido-Base , Animais , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
7.
J Phycol ; 56(1): 85-96, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31553063

RESUMO

Seaweeds are important components of near-shore ecosystems as primary producers, foundation species, and biogeochemical engineers. Seaweed communities are likely to alter under predicted climate change scenarios. We tested the physiological responses of three perennial, turf-building, intertidal rhodophytes, Mastocarpus stellatus, Osmundea pinnatifida, and the calcified Ellisolandia elongata, to elevated pCO2 over 6 weeks. Responses varied between these three species. E. elongata was strongly affected by high pCO2 , whereas non-calcified species were not. Elevated pCO2 did not induce consistent responses of photosynthesis and respiration across these three species. While baseline photophysiology differed significantly between species, we found few clear effects of elevated pCO2 on this aspect of macroalgal physiology. We found effects of within-species variation in elevated pCO2 response in M. stellatus, but not in the other species. Overall, our data confirm the sensitivity of calcified macroalgae to elevated pCO2 , but we found no evidence suggesting that elevated pCO2 conditions will have a strong positive or negative impact on photosynthetic parameters in non-calcified macroalgae.


Assuntos
Fotossíntese , Alga Marinha , Dióxido de Carbono , Mudança Climática , Ecossistema
8.
Ecol Evol ; 9(23): 13402-13412, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871653

RESUMO

Organisms inhabiting the intertidal zone have been used to study natural ecophysiological responses and adaptations to thermal stress because these organisms are routinely exposed to high-temperature conditions for hours at a time. While intertidal organisms may be inherently better at withstanding temperature stress due to regular exposure and acclimation, they could be more vulnerable to temperature stress, already living near the edge of their thermal limits. Strong gradients in thermal stress across the intertidal zone present an opportunity to test whether thermal tolerance is a plastic or canalized trait in intertidal organisms. Here, we studied the intertidal pool-dwelling calcified alga, Ellisolandia elongata, under near-future temperature regimes, and the dependence of its thermal acclimatization response on environmental history. Two timescales of environmental history were tested during this experiment. The intertidal pool of origin was representative of long-term environmental history over the alga's life (including settlement and development), while the pool it was transplanted into accounted for recent environmental history (acclimation over many months). Unexpectedly, neither long-term nor short-term environmental history, nor ambient conditions, affected photosynthetic rates in E. elongata. Individuals were plastic in their photosynthetic response to laboratory temperature treatments (mean 13.2°C, 15.7°C, and 17.7°C). Further, replicate ramets from the same individual were not always consistent in their photosynthetic performance from one experimental time point to another or between treatments and exhibited no clear trend in variability over experimental time. High variability in climate change responses between individuals may indicate the potential for resilience to future conditions and, thus, may play a compensatory role at the population or species level over time.

9.
Glob Chang Biol ; 25(12): 4165-4178, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31535452

RESUMO

Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13 C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13 C), previously exposed to elevated CO2 , were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2 . At elevated CO2 , infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short-term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft-sediment systems.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Ciclo do Carbono , Sedimentos Geológicos , Humanos , Concentração de Íons de Hidrogênio , Hipóxia
10.
Environ Pollut ; 248: 565-573, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831353

RESUMO

Coastal habitats, in particular sandy beaches, are becoming increasingly exposed to artificial light pollution at night (ALAN). Yet, only a few studies have this far assessed the effects of ALAN on the species inhabiting these ecosystems. In this study we assessed the effects of ALAN on Tylos spinulosus, a prominent wrack-consumer isopod living in sandy beaches of north-central Chile. This species burrows in the sand during daylight and emerges at night to migrate down-shore, so we argue it can be used as a model species for the study of ALAN effects on coastal nocturnal species. We assessed whether ALAN alters the distribution and locomotor activity of this isopod using a light system placed in upper shore sediments close to the edge of the dunes, mimicking light intensities measured near public lighting. The response of the isopods was compared to control transects located farther away and not exposed to artificial light. In parallel, we measured the isopods' locomotor activity in the laboratory using actographs that recorded their movement within mesocosms simulating the beach surface. Measurements in the field indicated a clear reduction in isopod abundance near the source of the light and a restriction of their tidal distribution range, as compared to control transects. Meanwhile, the laboratory experiments showed that in mesocosms exposed to ALAN, isopods exhibited reduced activity and a circadian rhythm that was altered and even lost after a few days. Such changes with respect to control mesocosms with a natural day/night cycle suggest that the changes observed in the field were directly related to a disruption in the locomotor activity of the isopods. All together these results provide causal evidence of negative ALAN effects on this species, and call for further research on other nocturnal sandy beach species that might become increasingly affected by ALAN.


Assuntos
Ritmo Circadiano/efeitos da radiação , Poluição Ambiental/efeitos adversos , Isópodes/fisiologia , Iluminação/efeitos adversos , Locomoção/efeitos da radiação , Animais , Chile , Ecossistema
11.
Sci Total Environ ; 661: 543-552, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682607

RESUMO

Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.


Assuntos
Poluição Ambiental/efeitos adversos , Gastrópodes/fisiologia , Características de História de Vida , Luz/efeitos adversos , Animais , Gastrópodes/efeitos da radiação , Comportamento Predatório/efeitos da radiação
12.
Environ Pollut ; 244: 361-366, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30352350

RESUMO

The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of "Baunco" the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.


Assuntos
Ciclos de Atividade/fisiologia , Comportamento Animal/fisiologia , Metabolismo Energético/fisiologia , Peixes/fisiologia , Iluminação/efeitos adversos , Consumo de Oxigênio/fisiologia , Animais , Ecossistema , Poluição Ambiental , Humanos , Fotoperíodo , Reprodução/fisiologia , Alimentos Marinhos
13.
Front Physiol ; 9: 1339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319447

RESUMO

Research into the effects of reduced pH caused by rising CO2 on echinoderms has been strongly biased toward those groups which rely heavily on calcification, such as sea urchins. There is very limited information available for groups that are less reliant on calcification, such as sea cucumbers. Moreover, plasticity in physiology and behavior in holothurians, which is considered to be critical to cope with ocean acidification, remains even less understood. Here, we examined the effects of a 22-week exposure to three pH levels (pH 7.97, 7.88, and 7.79) on the responses of adult Holothuria forskali. This is an abundant and ecologically important sea cucumber in shallow waters of the northeast Atlantic and Mediterranean. The holothurians did not exhibit serious acidosis after a 4-week gradually decreased pH exposure, possibly due to the slow acclimation period. After an additional 18 weeks of exposure, coelomic acid-base parameters did not differ significantly among the pH treatments, whereas they were higher than in week 4. Gonad development, defense behavior, and the structure and Ca2+ and Mg2+ concentrations of calcareous endoskeleton deposited in the body wall were all unaffected by decreased levels of seawater pH. No statistical differences were found after 22 weeks, and adult H. forskali showed strong physiological and behavioral plasticity to the effects of lowered seawater pH. While the interpretation of our results is restricted due to small sample sizes, this first long-term study of the effects of seawater acidification on sea cucumbers revealed resilience within the wide natural range of pCO2 found in NE Atlantic coastal waters.

14.
Mar Environ Res ; 129: 133-146, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506598

RESUMO

The processes and patterns seen in coastal benthic communities can be strongly influenced by the overlying pelagic environmental conditions. Integrating long-term biological and environmental data (both benthic and pelagic) can give insight into the specific relationships between key benthic functional groups and natural temporal changes in the marine environment. The identity and abundance of amphipod species found at Station L4 (Western English Channel) were tracked for 7 years (2008-2014), whilst simultaneously, annual changes in phytoplankton biomass, water temperature, salinity and chlorophyll a concentration were also characterized. The main species were persistent and showed little variability along the study period. Overall, however, there were significant changes in the structure of the whole community between sampling times, highlighting the importance of less numerically-dominant species in driving temporal variability. Surprisingly, the current study did not detect a significant influence of the phytoplankton biomass on benthic amphipod dynamics. On the other hand, there was a clear and constant correlation between bottom water temperatures and amphipod abundance. This pattern is different from that observed in other detritivorous species at L4, highlighting the complexity of benthic-pelagic coupling and the high variability of the response to pelagic conditions among different groups. As a result of the biogeographic position of the Western English Channel, the key role of amphipods in benthic communities, the influence of the temperature in their populations dynamics, as well as the solid baseline provided here and in previous studies, the monitoring of long-term amphipod dynamics in the English Channel could be a valuable tool to evaluate the biological effect of climate change over marine benthic communities.


Assuntos
Anfípodes/fisiologia , Ecossistema , Monitoramento Ambiental , Animais , Clorofila/análise , Clorofila A , Mudança Climática , Inglaterra , Geografia , Sedimentos Geológicos , Fitoplâncton , Dinâmica Populacional , Temperatura
15.
Nat Commun ; 8: 13994, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067268

RESUMO

Physiological responses to temperature are known to be a major determinant of species distributions and can dictate the sensitivity of populations to global warming. In contrast, little is known about how other major global change drivers, such as ocean acidification (OA), will shape species distributions in the future. Here, by integrating population genetics with experimental data for growth and mineralization, physiology and metabolomics, we demonstrate that the sensitivity of populations of the gastropod Littorina littorea to future OA is shaped by regional adaptation. Individuals from populations towards the edges of the natural latitudinal range in the Northeast Atlantic exhibit greater shell dissolution and the inability to upregulate their metabolism when exposed to low pH, thus appearing most sensitive to low seawater pH. Our results suggest that future levels of OA could mediate temperature-driven shifts in species distributions, thereby influencing future biogeography and the functioning of marine ecosystems.

16.
Mar Environ Res ; 122: 158-168, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816195

RESUMO

Carbon dioxide capture and storage (CCS), involving the injection of CO2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO2-enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO2-enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO2. Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be considered with caution and further investigated simulating the intrusion of CO2 from a subsurface source, as occurring during real CO2 leakages from CCS sites.


Assuntos
Sequestro de Carbono , Fenômenos Ecológicos e Ambientais , Monitoramento Ambiental , Carbono , Dióxido de Carbono/análise , Ecossistema , Sedimentos Geológicos , Água do Mar , Poluentes Químicos da Água/análise
17.
Mar Pollut Bull ; 109(1): 267-280, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27289279

RESUMO

Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys.


Assuntos
Dióxido de Carbono , Ecossistema , Modelos Teóricos
18.
Front Microbiol ; 6: 935, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441872

RESUMO

Atmospheric CO2 emissions are a global concern due to their predicted impact on biodiversity, ecosystems functioning, and human life. Among the proposed mitigation strategies, CO2 capture and storage, primarily the injection of CO2 into marine deep geological formations has been suggested as a technically practical option for reducing emissions. However, concerns have been raised that possible leakage from such storage sites, and the associated elevated levels of pCO2 could locally impact the biodiversity and biogeochemical processes in the sediments above these reservoirs. Whilst a number of impact assessment studies have been conducted, no information is available on the specific responses of viruses and virus-host interactions. In the present study, we tested the impact of a simulated CO2 leakage on the benthic microbial assemblages, with specific focus on microbial activity and virus-induced prokaryotic mortality (VIPM). We found that exposure to levels of CO2 in the overlying seawater from 1,000 to 20,000 ppm for a period up to 140 days, resulted in a marked decrease in heterotrophic carbon production and organic matter degradation rates in the sediments, associated with lower rates of VIPM, and a progressive accumulation of sedimentary organic matter with increasing CO2 concentrations. These results suggest that the increase in seawater pCO2 levels that may result from CO2 leakage, can severely reduce the rates of microbial-mediated recycling of the sedimentary organic matter and viral infections, with major consequences on C cycling and nutrient regeneration, and hence on the functioning of benthic ecosystems.

19.
FEMS Microbiol Ecol ; 91(8): fiv092, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26220309

RESUMO

The geological storage of carbon dioxide (CO2) is expected to be an important component of future global carbon emission mitigation, but there is a need to understand the impacts of a CO2 leak on the marine environment and to develop monitoring protocols for leakage detection. In the present study, sediment cores were exposed to CO2-acidified seawater at one of five pH levels (8.0, 7.5, 7.0, 6.5 and 6.0) for 10 weeks. A bloom of Spirulina sp. and diatoms appeared on sediment surface exposed to pH 7.0 and 7.5 seawater. Quantitative PCR measurements of the abundance of 16S rRNA also indicated an increase within the pH 7.0 and 7.5 treatments after 10 weeks incubation. More detailed analysis of the microbial communities from the pH 7.0, 7.5 and 8.0 treatments confirmed an increase in the relative abundance of Spirulina sp. and Navicula sp. sequences, with changes in the relative abundance of major archaeal and bacterial groups also detected within the pH 7.0 treatment. A decreased flux of silicate from the sediment at this pH was also detected. Monitoring blooms of microphytobenthos may prove useful as an indicator of CO2 leakage within coastal areas.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/crescimento & desenvolvimento , Água do Mar/microbiologia , Spirulina/crescimento & desenvolvimento , Archaea/classificação , Archaea/genética , Sequência de Bases , Dióxido de Carbono/análise , DNA Arqueal/genética , DNA Bacteriano/genética , Eutrofização , Fenômenos Geológicos , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Água do Mar/química , Análise de Sequência de DNA
20.
PeerJ ; 3: e863, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25834773

RESUMO

Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2-3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA