Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(39): 52352-52370, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145908

RESUMO

Particulate matter (PM) is one of the most hazardous atmospheric pollutants. Several plant species show high potential to reduce air pollutants and are widely used as green belts to provide clean outdoor spaces for human well-being. However, high PM concentrations cause physiological changes and stress in plants. In this study, 11 species of Thai native perennial plants were exposed to PM generated from tobacco smoke. Wrightia religiosa (Teijsm. & Binn.) Benth. ex Kurz, Bauhinia purpurea DC. ex Walp. and Tectona grandis L.f. reduced PM effectively (which is in the typical range of 43.95 to 52.97%) compared to other plant species. In addition, the responses of perennial plants under PM stress at the proteomic level were also evaluated. Proteomic analysis of these three plant species showed that plants respond negatively to high PM concentrations, such as reducing several photosynthetic-related proteins and increasing plant stress response proteins. To improve PM phytoremediation efficiency and reduce plant stress from PM, perennial plant-microbe interactions were investigated. W. religiosa was inoculated with Acinetobacter indicus PS1, and high biosurfactant-producing strains clearly showed a higher PM removal efficiency than non-inoculated plants (9.48, 9.5 and 12.6% for PM1.0, PM2.5 and PM10, respectively). Inoculating W. religiosa with A. indicus PS1 maintained chlorophyll a and b concentrations. Moreover, the malondialdehyde (MDA) concentration of W. religiosa inoculated with A. indicus PS1 was lower than that of non-inoculated W. religiosa. The leaf wax content (µg/cm2) and biosurfactant (µg/cm2) of W. religiosa inoculated with A. indicus PS1 were also higher than those of non-inoculated W. religiosa. This study clearly showed that inoculating plants with A. indicus PS1 can help plants remediate PM and improve their PM stress response.


Assuntos
Biodegradação Ambiental , Material Particulado , Acinetobacter , Fumaça , Poluentes Atmosféricos , Nicotiana
2.
PLoS One ; 18(8): e0289722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549156

RESUMO

It has been 23 years since the conservation status of highland tropical pitcher plant Nepenthes talangensis was assessed in 2000. A number of existing threats (anthropogenic and environmental) may be increasing the risk of extinction for the species. A better understanding of the ecology and conservation needs of the species is required to manage the wild populations. Specifically, better information related to population distributions, ecological requirements, priority conservation areas, the impact of future climate on suitable habitat, and current population structure is needed to properly assess extinction risks. A better understanding of the requirements of the species in its natural habitat would benefit for successfully securing the species at Botanic Gardens. We have identified 14 new occurrence records of N. talangensis in Mount Talang. Study on the ecological requirement using Random Forest (RF) and Artificial Neural Network (ANN) suggested that elevation, canopy cover, soil pH, and slope are four important variables. The population of N. talangensis was dominated by juvenile and mature (sterile) individuals, we found only a few mature males (7 individuals) and females (4 individuals) in the sampled areas. Our modelling of current conditions predicted that there were 1,076 ha of suitable habitat to very highly suitable habitat in Mount Talang, which is 14.7% of the total area. Those predicted habitats ranged in elevation from 1,740-2,558 m. Suitable habitat in 2100 was predicted to decrease in extent and be at higher elevation in the less extreme climate change scenario (SSP 1-2.6) and extreme climate change scenario (SSP 5-8.5). We projected larger habitat loss in the SSP 5-8.5 compared to the SSP 1-2.6 climate change scenario.. We proposed the category CR B1ab(iii,v), C2a(ii) as the new conservation status of N. talangensis. The status is a higher category of threat compared to the current status of the species (EN C2b, ver 2.3). Nepenthes talangensis seedlings and cuttings established in a Botanic Garden have relatively high survival rate at about 83.4%. Sixty percent of the seeds germinated in growth media successfully grew to become seedlings.


Assuntos
Mudança Climática , Ecossistema , Humanos , Plântula , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA