Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 13(1): 5202, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057633

RESUMO

Spermidine is a natural polyamine that has health benefits and extends life span in several species. Deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH) are key enzymes that utilize spermidine to catalyze the post-translational hypusination of the translation factor EIF5A (EIF5AH). Here, we have found that hepatic DOHH mRNA expression is decreased in patients and mice with non-alcoholic steatohepatitis (NASH), and hepatic cells treated with fatty acids. The mouse and cell culture models of NASH have concomitant decreases in Eif5aH and mitochondrial protein synthesis which leads to lower mitochondrial activity and fatty acid ß-oxidation. Spermidine treatment restores EIF5AH, partially restores protein synthesis and mitochondrial function in NASH, and prevents NASH progression in vivo. Thus, the disrupted DHPS-DOHH-EIF5AH pathway during NASH represents a therapeutic target to increase hepatic protein synthesis and mitochondrial fatty acid oxidation (FAO) and prevent NASH progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Espermidina , Animais , Ácidos Graxos , Lisina/metabolismo , Camundongos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Espermidina/farmacologia
2.
Thyroid ; 32(6): 725-738, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35317606

RESUMO

Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRß cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRß cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased ß-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase ß-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.


Assuntos
Água Potável , Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Água Potável/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hormônios Tireóideos/metabolismo , Triglicerídeos/metabolismo
3.
Nat Commun ; 7: 12061, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389904

RESUMO

Coronary flow (CF) measured ex vivo is largely determined by capillary density that reflects angiogenic vessel formation in the heart in vivo. Here we exploit this relationship and show that CF in the rat is influenced by a locus on rat chromosome 2 that is also associated with cardiac capillary density. Mitochondrial tryptophanyl-tRNA synthetase (Wars2), encoding an L53F protein variant within the ATP-binding motif, is prioritized as the candidate at the locus by integrating genomic data sets. WARS2(L53F) has low enzyme activity and inhibition of WARS2 in endothelial cells reduces angiogenesis. In the zebrafish, inhibition of wars2 results in trunk vessel deficiencies, disordered endocardial-myocardial contact and impaired heart function. Inhibition of Wars2 in the rat causes cardiac angiogenesis defects and diminished cardiac capillary density. Our data demonstrate a pro-angiogenic function for Wars2 both within and outside the heart that may have translational relevance given the association of WARS2 with common human diseases.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Células Endoteliais da Veia Umbilical Humana/enzimologia , Mitocôndrias/genética , Neovascularização Fisiológica/genética , Triptofano-tRNA Ligase/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/química , Embrião não Mamífero , Loci Gênicos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Mitocôndrias/metabolismo , Miocárdio/citologia , Miocárdio/enzimologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Triptofano-tRNA Ligase/antagonistas & inibidores , Triptofano-tRNA Ligase/metabolismo , Peixe-Zebra
4.
Protein Sci ; 18(10): 2115-24, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19691130

RESUMO

Plasmodium falciparum FK506-binding protein 35 (PfFKBP35) that binds to FK506 contains a conserved tetratricopeptide repeat (TPR) domain. Several known TPR domains such as Hop, PPP5, CHIP, and FKBP52 are structurally conserved and are able to interact with molecular chaperones such as Hsp70/Hsp90. Here, we present the crystal structure of PfFKBP35-TPR and demonstrate its interaction with Hsp90 C-terminal pentapeptide (MEEVD) by surface plasmon resonance and nuclear magnetic resonance spectroscopy-based binding studies. Our sequence and structural analyses reveal that PfFKBP35 is similar to Hop and PPP5 in possessing all the conserved residues which are important for carboxylate clamping with Hsp90. Mutational studies were carried out on positively charged clamp residues that are crucial for binding to carboxylate groups of aspartate, showing that all the mutated residues are important for Hsp90 binding. Molecular docking and electrostatic calculations demonstrated that the MEEVD peptide of Hsp90 can form aspartate clamp unlike FKBP52. Our results provide insightful information and structural basis about the molecular interaction between PfFKBP35-TPR and Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Alinhamento de Sequência , Tacrolimo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA