Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Sci ; 31(4): 966-974, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012522

RESUMO

We aimed to evaluate fetal and placental oxygen saturation (sO2) in anemic and non-anemic pregnant rats throughout gestation using photoacoustic imaging (PAI). Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and during pregnancy. On gestational days 13, 18, and 21, PAI was coupled with high resolution ultrasound to measure oxygenation of the fetus, whole placenta, mesometrial triangle, as well as the maternal and fetal faces of the placenta. PAI was performed in 3D, which allowed sO2 to be measured within an entire region, as well as in 2D, which enabled sO2 measurements in response to a hypoxic event in real time. Both 3D and 2D PAI were performed at varying levels of FiO2 (fraction of inspired oxygen). Iron restriction caused anemia in dams and fetuses, a reduction in fetal body weight, and an increase in placental weight, but overall had minimal effects on sO2. Reductions in FiO2 caused corresponding reductions in sO2 which correlated to the severity of the hypoxic challenge. Regional differences in sO2 were evident within the placenta and between the placenta and fetus. In conclusion, PAI enables non-invasive measurement of sO2 both rapidly and with a high degree of sensitivity. The lack of overt changes in sO2 levels between control and anemic fetuses may suggest reduced oxygen extraction and utilization in the latter group, which could be attributed to compensatory changes in growth and developmental trajectories.


Assuntos
Anemia , Técnicas Fotoacústicas , Gravidez , Feminino , Ratos , Animais , Placenta/metabolismo , Saturação de Oxigênio , Ratos Sprague-Dawley , Hipóxia/diagnóstico por imagem , Hipóxia/metabolismo , Anemia/diagnóstico por imagem , Anemia/metabolismo , Oxigênio , Ferro , Feto
2.
Clin Sci (Lond) ; 137(15): 1115-1130, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37463130

RESUMO

Iron deficiency (ID) is common during gestation and in early infancy and can alter developmental trajectories with lasting consequences on cardiovascular health. While the effects of ID and anemia on the mature heart are well documented, comparatively little is known about their effects and mechanisms on offspring cardiac development and function in the neonatal period. Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and during pregnancy. Cardiac function was assessed in a cohort of offspring on postnatal days (PD) 4, 14, and 28 by echocardiography; a separate cohort was euthanized for tissue collection and hearts underwent quantitative shotgun proteomic analysis. ID reduced body weight and increased relative heart weights at all time points assessed, despite recovering from anemia by PD28. Echocardiographic studies revealed unique functional impairments in ID male and female offspring, characterized by greater systolic dysfunction in the former and greater diastolic dysfunction in the latter. Proteomic analysis revealed down-regulation of structural components by ID, as well as enriched cellular responses to stress; in general, these effects were more pronounced in males. ID causes functional changes in the neonatal heart, which may reflect an inadequate or maladaptive compensation to anemia. This identifies systolic and diastolic dysfunction as comorbidities to perinatal ID anemia which may have important implications for both the short- and long-term cardiac health of newborn babies. Furthermore, therapies which improve cardiac output may mitigate the effects of ID on organ development.


Assuntos
Anemia Ferropriva , Deficiências de Ferro , Gravidez , Ratos , Animais , Masculino , Feminino , Ferro , Ratos Sprague-Dawley , Proteômica
3.
Biomedicines ; 11(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36831019

RESUMO

Sepsis remains one of the leading causes of death worldwide. Oncostatin M (OSM), an interleukin (IL)-6 family cytokine, can be found at high levels in septic patients. However, little is known about its role in sepsis. This study aimed to determine if the genetic knockout of OSM receptor (OSMR) type II signaling would improve survival in a murine model of sepsis. Aged (>50 weeks) OSMR type II knockout (KO) mice and wild-type (WT) littermates received an intraperitoneal injection of fecal slurry (FS) or vehicle. The KO mice had better survival 48 h after the injection of FS than the WT mice (p = 0.005). Eighteen hours post-FS injection, the KO mice had reduced peritoneal, serum, and tissue cytokine levels (including IL-1ß, IL-6, TNFα, KG/GRO, and IL-10) compared to the WT mice (p < 0.001 for all). Flow cytometry revealed decreased recruitment of CD11b+ F4/80+ Ly6chigh+ macrophages in the peritoneum of KO mice compared to WT mice (34 ± 6 vs. 4 ± 3%, PInt = 0.005). Isolated peritoneal macrophages from aged KO mice had better live E. coli killing capacity than those from WT mice (p < 0.001). Peritoneal lavage revealed greater bacterial counts in KO mice than in WT mice (KO: 305 ± 22 vs. 116 ± 6 CFU (×109)/mL; p < 0.001). In summary, deficiency in OSMR type II receptor signaling provided a survival benefit in the progression of sepsis. This coincided with reduced serum levels of pro-inflammatory (IL-1ß, TNFα, and KC/GRO) and anti-inflammatory markers (IL-10), increased bacterial killing ability of macrophages, and reduced macrophage infiltration into to site of infection.

4.
J Nutr Biochem ; 112: 109227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435294

RESUMO

Long-term alterations in kidney structure and function have been observed in offspring exposed to perinatal stressors such as iron deficiency (ID), albeit the mechanisms underlying these changes remain unclear. Here, we assessed how perinatal ID alters renal vitamin A metabolism, an important contributor to nephrogenesis, in the developing kidney. Pregnant Sprague Dawley rats were fed either an iron-restricted or -replete diet throughout gestation, and offspring were studied on postnatal day (PD)1 and 28. Maternal iron restriction results in reduced renal retinoid concentrations in male and female offspring on PD1 (P=.005). Nephron endowment was reduced by 21% in male perinatal ID offspring (P<.001), whereas it was unaffected in perinatal ID females. Perinatal ID resulted in sex-dependent changes in kidney retinoid synthesis and metabolism, whereby male offspring exhibited increased expression of Raldh2 and Rar/Rxr isoforms, while females exhibited unchanged or decreased expression (all interaction P<.05). Male perinatal ID offspring exhibit sex-specific enhancements of retinoic acid pathway signaling components on PD1, including Gdnf (P<.01) and Ctnnb1 (P<.01), albeit robust upregulation of RA transcriptional target Stra6 was observed in both sexes (P=.006). On PD28, perinatal ID resulted in elevated renal retinoid concentrations (P=.02) coinciding with enhanced expression of Raldh2 (P=.04), but not any Rar isoform or Rxr. Further, perinatal ID resulted in robust upregulation of Gdnf, Ret, Ctnnb1, associated with further increases in both Cxcr4 and Stra6 (all P<.01) at PD28. Together, these data suggest perinatal ID results in sustained sex-dependent perturbations in vitamin A metabolism, which likely underlie sex-specific reductions in nephron endowment.


Assuntos
Deficiências de Ferro , Tretinoína , Gravidez , Ratos , Animais , Masculino , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ratos Sprague-Dawley , Vitamina A , Rim/metabolismo , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA