Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805583

RESUMO

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Ativação Transcricional , Fosforilação , Células HEK293 , Transição Epitelial-Mesenquimal , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animais , Serina-Treonina Quinase 3 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Alzheimers Dement ; 20(3): 1573-1585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041855

RESUMO

INTRODUCTION: A wide array of post-translational modifications of the tau protein occurs in Alzheimer's disease (AD) and they are critical to pathogenesis and biomarker development. Several promising tau markers, pT181, pT217, and pT231, rely on increased phosphorylation within a common molecular motif threonine-proline-proline (TPP). METHODS: We validated new and existing antibodies against pT217, pT231, pT175, and pT181, then combined immunohistochemistry (IHC) and immunoassays (ELISA) to broadly examine the phosphorylation of the tau TPP motif in AD brains. RESULTS: The tau burden, as examined by IHC and ELISA, correlates to Braak stages across all TPP sites. Moreover, we observed regional variability across four TPP motif phosphorylation sites in multiple brains of sporadic AD patients. DISCUSSION: We conclude that there is an elevation of TPP tau phosphorylation in AD brains as disease advances. The regional variability of pTPP tau suggests that examining different phosphorylation sites is essential for a comprehensive assessment of tau pathology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Fosforilação , Treonina/metabolismo , Encéfalo/patologia , Prolina/metabolismo
3.
Cell Rep ; 42(12): 113535, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060450

RESUMO

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Assuntos
Proteínas Serina-Treonina Quinases , Humanos , Animais , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL , Masculino , Feminino , Epinefrina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Deleção de Genes , Colforsina/farmacologia , Insulina/metabolismo , Fosforilação/efeitos dos fármacos , Via de Sinalização Hippo/efeitos dos fármacos , Via de Sinalização Hippo/genética
4.
Sci Rep ; 13(1): 3394, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854738

RESUMO

Millions of traumatic brain injuries (TBIs) occur annually. TBIs commonly result from falls, traffic accidents, and sports-related injuries, all of which involve rotational acceleration/deceleration of the brain. During these injuries, the brain endures a multitude of primary insults including compression of brain tissue, damaged vasculature, and diffuse axonal injury. All of these deleterious effects can contribute to secondary brain ischemia, cellular death, and neuroinflammation that progress for weeks, months, and lifetime after injury. While the linear effects of head trauma have been extensively modeled, less is known about how rotational injuries mediate neuronal damage following injury. Here, we developed a new model of repetitive rotational head trauma in rodents and demonstrated acute and prolonged pathological, behavioral, and electrophysiological effects of rotational TBI (rTBI). We identify aberrant Cyclin-dependent kinase 5 (Cdk5) activity as a principal mediator of rTBI. We utilized Cdk5-enriched phosphoproteomics to uncover potential downstream mediators of rTBI and show pharmacological inhibition of Cdk5 reduces the cognitive and pathological consequences of injury. These studies contribute meaningfully to our understanding of the mechanisms of rTBI and how they may be effectively treated.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Quinase 5 Dependente de Ciclina , Animais , Ratos , Encéfalo , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos Craniocerebrais/genética , Traumatismos Craniocerebrais/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo
5.
Cell Rep ; 40(7): 111218, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977518

RESUMO

Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.


Assuntos
Adenilato Quinase , Carcinoma Neuroendócrino , Adenilato Quinase/metabolismo , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Metabolismo Energético , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Fosforilação , Succinatos
6.
Proc Natl Acad Sci U S A ; 117(31): 18401-18411, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690709

RESUMO

Disparities in cancer patient responses have prompted widespread searches to identify differences in sensitive vs. nonsensitive populations and form the basis of personalized medicine. This customized approach is dependent upon the development of pathway-specific therapeutics in conjunction with biomarkers that predict patient responses. Here, we show that Cdk5 drives growth in subgroups of patients with multiple types of neuroendocrine neoplasms. Phosphoproteomics and high throughput screening identified phosphorylation sites downstream of Cdk5. These phosphorylation events serve as biomarkers and effectively pinpoint Cdk5-driven tumors. Toward achieving targeted therapy, we demonstrate that mouse models of neuroendocrine cancer are responsive to selective Cdk5 inhibitors and biomimetic nanoparticles are effective vehicles for enhanced tumor targeting and reduction of drug toxicity. Finally, we show that biomarkers of Cdk5-dependent tumors effectively predict response to anti-Cdk5 therapy in patient-derived xenografts. Thus, a phosphoprotein-based diagnostic assay combined with Cdk5-targeted therapy is a rational treatment approach for neuroendocrine malignancies.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tumores Neuroectodérmicos/tratamento farmacológico , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/genética , Fosforilação
7.
eNeuro ; 2(3)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464987

RESUMO

Injury to the CNS induces astrogliosis, an astrocyte-mediated response that has both beneficial and detrimental impacts on surrounding neural and non-neural cells. The precise signaling events underlying astrogliosis are not fully characterized. Here, we show that astrocyte activation was altered and proliferation was reduced in Semaphorin 4B (Sema4B)-deficient mice following injury. Proliferation of cultured Sema4B(-/-) astrocytes was also significantly reduced. In contrast to its expected role as a ligand, the Sema4B ectodomain was not able to rescue Sema4B(-/-) astrocyte proliferation but instead acted as an antagonist against Sema4B(+/-) astrocytes. Furthermore, the effects of Sema4B on astrocyte proliferation were dependent on phosphorylation of the intracellular domain at Ser825. Our results suggest that Sema4B functions as an astrocyte receptor, defining a novel signaling pathway that regulates astrogliosis after CNS injury.

8.
Neuron ; 81(5): 1070-1083, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24607229

RESUMO

Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers because of its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when overexpressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor's cell surface expression. Disrupting NR2B-Cdk5 interaction via a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Transtornos da Memória/metabolismo , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Feminino , Hipocampo/citologia , Masculino , Transtornos da Memória/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
9.
Oncogene ; 23(54): 8815-25, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15467741

RESUMO

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder characterized by bilateral vestibular schwannomas and meningiomas. Merlin, the neurofibromatosis 2 tumor suppressor protein, is related to the ERM (ezrin, radixin, moesin) proteins and, like its family members, is thought to play a role in plasma membrane-cytoskeletal interactions. We report a novel protein as a merlin-specific binding partner that we have named magicin (merlin and Grb2 interacting cytoskeletal protein) and show that the two proteins interact in vitro and in vivo as well as colocalize beneath the plasma membrane. Magicin is a 24 kDa protein that is expressed in many cell lines and tissues. Magicin, similar to merlin, associates with the actin cytoskeleton as determined by cofractionation, immunofluorescence and electron microscopy. Analysis of the magicin sequence reveals binding motifs for the adaptor protein Grb2. Employing affinity binding, blot overlay and co-immunoprecipitation assays, we demonstrate an interaction between Grb2 and magicin. In addition, merlin is capable of forming a ternary complex with magicin and Grb2. These results support a role for merlin in receptor-mediated signaling at the cell surface, and may have implications in the regulation of cytoskeletal reorganization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Neurofibromina 2/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto/química , Imunofluorescência , Proteína Adaptadora GRB2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Complexo Mediador , Microscopia Eletrônica , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA