Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16128, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997418

RESUMO

This work presents a novel approach to investigating the slip effect in nanofiber filter media. Electrospun nanofiber media with high efficiency and low pressure drop were produced at different concentrations and durations. The surface and cross-sectional morphology of nanofiber media were studied using FE-SEM. Fiber orientation and diameter distributions were also examined. The 3D virtual nanofiber media was modeled using this information along with the experimentally measured porosity and thickness of the media. The effect of the slip phenomenon in nanofiber media was studied numerically, and the results were compared to experimental data. Excellent agreements were found between the measured and simulation results. Additionally, filtration simulations considering aerosols injected with airflow through the nanofibrous filter media were conducted by considering the slip effect, and the effect of filter structure on filtration performance (removal efficiency and pressure drop) was investigated.

2.
Sci Rep ; 13(1): 19359, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938595

RESUMO

In this paper we lay the foundation for data-driven 3D analysis of virtual fiber systems with respect to their microstructure and functionality. In particular, we develop a stochastic 3D model for systems of curved fibers similar to nonwovens, which is fitted to tomographic image data. By systematic variations of model parameters, efficient computer-based scenario analyses can be performed to get a deeper insight how effective properties of this type of functional materials depend on their 3D microstructure. In a first step, we consider single fibers as polygonal tracks which can be modeled by a third-order Markov chain. For constructing the transition function of the Markov chain, we formalize the intuitive notions of intrinsic fiber properties and external effects and build a copula-based transition function such that both aspects can be varied independently. Using this single-fiber model, in a second step we derive a model for the entire fiber system observed in a bounded sampling window and fit it to two different 3D datasets of nonwovens measured by CT imaging. Considering various geometric descriptors of the 3D microstructure related to effective properties of the pore space, we evaluate the goodness of model fit by comparing geometric descriptors of the 3D morphology of model realizations with those of tomographic image data.

3.
Sci Rep ; 10(1): 49, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913330

RESUMO

Porosity and permeability are the key factors in assessing the hydrocarbon productivity of unconventional (shale) reservoirs, which are complex in nature due to their heterogeneous mineralogy and poorly connected nano- and micro-pore systems. Experimental efforts to measure these petrophysical properties posse many limitations, because they often take weeks to complete and are difficult to reproduce. Alternatively, numerical simulations can be conducted in digital rock 3D models reconstructed from image datasets acquired via e.g., nanoscale-resolution focused ion beam-scanning electron microscopy (FIB-SEM) nano-tomography. In this study, impact of reservoir confinement (stress) on porosity and permeability of shales was investigated using two digital rock 3D models, which represented nanoporous organic/mineral microstructure of the Marcellus Shale. Five stress scenarios were simulated for different depths (2,000-6,000 feet) within the production interval of a typical oil/gas reservoir within the Marcellus Shale play. Porosity and permeability of the pre- and post-compression digital rock 3D models were calculated and compared. A minimal effect of stress on porosity and permeability was observed in both 3D models. These results have direct implications in determining the oil-/gas-in-place and assessing the production potential of a shale reservoir under various stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA