Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Int ; 107: 66-77, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28323006

RESUMO

The process of protein modification by adding or detaching small ubiquitin-like modifiers (SUMO) proteins, called SUMOylation, contributes to the regulation of numerous processes in eukaryotic cells. SUMOylation also represents a key response and adaption mechanism to different forms of metabolic stress. The central nervous system (CNS) and neurons in particular are highly susceptible to hypoxic-ischemic stress due to the lack of significant oxygen and energy reserves. SUMOylation is observed in many molecular responses to metabolic stress in the brain, and is therefore supposed to represent an endogenous neuroprotective mechanism. However, the detailed roles of SUMOylation during CNS hypoxia-ischemia are not well understood so far. Moreover, SUMOylation is subjected to complex regulatory mechanisms and might exert protective, but also detrimental processes during hypoxic-ischemic stress. This review provides a comprehensive overview on SUMOylation processes under physiological and pathological conditions in the CNS. A particular spotlight is set on clinically relevant hypoxic-ischemic conditions such as stroke by focusing on peri- and postischemic SUMOylation in neurons and astrocytes. The review describes relevant SUMOylation targets in these cells to discuss confirmed and supposed downstream mechanisms potentially contributing to neuroprotection, but also to sometimes detrimental processes. The review further provides unique insights into the time course of SUMO responses during cerebral ischemia in different cerebral cell populations. This includes neurons, astrocytes, but also phagocytes that become activated (microglia) and/or migrate (macrophages/monocytes) to the ischemic CNS. Based on this compact knowledge, the review finally suggests potential directions for future basic and translational research.


Assuntos
Isquemia Encefálica/metabolismo , Hipóxia Encefálica/metabolismo , Sumoilação/fisiologia , Animais , Isquemia Encefálica/prevenção & controle , Humanos , Hipóxia Encefálica/prevenção & controle , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
J Neurosci ; 32(31): 10699-712, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855818

RESUMO

In the developing nervous system, spontaneous neuronal activity arises independently of experience or any environmental input. This activity may play a major role in axonal pathfinding, refinement of topographic maps, dendritic morphogenesis, and the segregation of axonal terminal arbors. In the auditory system, endogenously released ATP in the cochlea activates inner hair cells to trigger bursts of action potentials (APs), which are transferred to the central auditory system. Here we show the modulatory role of purinergic signaling beyond the cochlea, i.e., the developmentally regulated and cell-type-specific depolarizing effects on auditory brainstem neurons of Mongolian gerbil. We assessed the effects of P2X receptors (P2XRs) on neuronal excitability from prehearing to early stages of auditory signal processing. Our results demonstrate that in neurons expressing P2XRs, extracellular ATP can evoke APs in sync with Ca(2+) signals. In cochlear nucleus (CN) bushy cells, ATP increases spontaneous and also acoustically evoked activity in vivo, but these effects diminish with maturity. Moreover, ATP not only augmented glutamate-driven firing, but it also evoked APs in the absence of glutamatergic transmission. In vivo recordings also revealed that endogenously released ATP in the CN contributes to neuronal firing activity by facilitating AP generation and prolonging AP duration. Given the enhancing effect of ATP on AP firing and confinement of P2XRs to certain auditory brainstem nuclei, and to distinct neurons within these nuclei, it is conceivable that purinergic signaling plays a specific role in the development of neuronal brainstem circuits.


Assuntos
Potenciais de Ação/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/crescimento & desenvolvimento , Receptores Purinérgicos P2X/metabolismo , Células Receptoras Sensoriais/fisiologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Gerbillinae , Glicina/farmacologia , Técnicas In Vitro , Ácido Cinurênico/farmacologia , Masculino , Técnicas de Patch-Clamp , Psicoacústica , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estilbamidinas/metabolismo , Potenciais Sinápticos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA