Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biomater Sci ; 12(6): 1371-1404, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38363090

RESUMO

Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.


Assuntos
Materiais Biocompatíveis , Traumatismos dos Nervos Periféricos , Humanos , Nervos Periféricos , Alicerces Teciduais , Traumatismos dos Nervos Periféricos/cirurgia , Regeneração Nervosa
2.
MethodsX ; 10: 102139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025651

RESUMO

[This corrects the article DOI: 10.1016/j.mex.2019.10.018.].

3.
Adv Healthc Mater ; 12(19): e2203021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37057819

RESUMO

Cartilage tissue presents low self-repair capability and lesions often undergo irreversible progression. Structures obtained by tissue engineering, such as those based in extrusion bioprinting of constructs loaded with stem cell spheroids may offer valuable alternatives for research and therapeutic purposes. Human mesenchymal stromal cell (hMSC) spheroids can be chondrogenically differentiated faster and more efficiently than single cells. This approach allows obtaining larger tissues in a rapid, controlled and reproducible way. However, it is challenging to control tissue architecture, construct stability, and cell viability during maturation. Herein, this work reports a reproducible bioprinting process followed by a successful post-bioprinting chondrogenic differentiation procedure using large quantities of hMSC spheroids encapsulated in a xanthan gum-alginate hydrogel. Multi-layered constructs are bioprinted, ionically crosslinked, and post chondrogenically differentiated for 28 days. The expression of glycosaminoglycan, collagen II and IV are observed. After 56 days in culture, the bioprinted constructs are still stable and show satisfactory cell metabolic activity with profuse extracellular matrix production. These results show a promising procedure to obtain 3D models for cartilage research and ultimately, an in vitro proof-of-concept of their potential use as stable chondral tissue implants.


Assuntos
Bioimpressão , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Bioimpressão/métodos , Cartilagem , Diferenciação Celular , Células-Tronco , Impressão Tridimensional , Alicerces Teciduais/química
4.
Eur J Pharm Sci ; 185: 106441, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004962

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have been extensively researched for their anti-inflammatory and neuroregenerative properties. Despite the known neuroplastic and myelin regenerative properties of nonselective PDE4 inhibitors on the central nervous system, the direct impact on peripheral remyelination and subsequent neuroregeneration has not yet been investigated. Therefore, to examine the possible therapeutic effect of PDE4 inhibition on peripheral glia, we assessed the differentiation of primary rat Schwann cells exposed in vitro to the PDE4 inhibitor roflumilast. To further investigate the differentiation promoting effects of roflumilast, we developed a 3D model of rat Schwann cell myelination that closely resembles the in vivo situation. Using these in vitro models, we demonstrated that pan-PDE4 inhibition using roflumilast significantly promoted differentiation of Schwann cells towards a myelinating phenotype, as indicated by the upregulation of myelin proteins, including MBP and MAG. Additionally, we created a unique regenerative model comprised of a 3D co-culture of rat Schwann cells and human iPSC-derived neurons. Schwann cells treated with roflumilast enhanced axonal outgrowth of iPSC-derived nociceptive neurons, which was accompanied by an accelerated myelination speed, thereby showing not only phenotypic but also functional changes of roflumilast-treated Schwann cells. Taken together, the PDE4 inhibitor roflumilast possesses a therapeutic benefit to stimulate Schwann cell differentiation and, subsequently myelination, as demonstrated in the biologically relevant in vitro platform used in this study. These results can aid in the development of novel PDE4 inhibition-based therapies in the advancement of peripheral regenerative medicine.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Inibidores da Fosfodiesterase 4 , Ratos , Animais , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Células de Schwann/metabolismo , Bainha de Mielina/genética
5.
Brain Behav Immun ; 109: 1-22, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584795

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Bainha de Mielina/metabolismo , Esclerose Múltipla/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/uso terapêutico , Potenciais Evocados Visuais , Oligodendroglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Diferenciação Celular , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL
6.
Bioact Mater ; 21: 209-222, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36101857

RESUMO

The dual role of macrophages in the healing process depends on macrophage ability to polarize into phenotypes that can propagate inflammation or exert anti-inflammatory and tissue-remodeling functions. Controlling scaffold geometry has been proposed as a strategy to influence macrophage behavior and favor the positive host response to implants. Here, we fabricated Polycaprolactone (PCL) scaffolds by Melt Electrowriting (MEW) to investigate the ability of scaffold architecture to modulate macrophage polarization. Primary human macrophages unpolarized (M0) or polarized into M1, M2a, and M2c phenotypes were cultured on PCL films and MEW scaffolds with pore geometries (square, triangle, and rhombus grid) characterized by different angles. M0, M2a, and M2c macrophages wrapped along the fibers, while M1 macrophages formed clusters with rounded cells. Cell bridges were formed only for angles up to 90°. No relevant differences were found among PCL films and 3D scaffolds in terms of surface markers. CD206 and CD163 were highly expressed by M2a and M2c macrophages, with M2a macrophages presenting also high levels of CD86. M1 macrophages expressed moderate levels of all markers. The rhombus architecture promoted an increased release by M2a macrophages of IL10, IL13, and sCD163 compared to PCL films. The proangiogenic factor IL18 was also upregulated by the rhombus configuration in M0 and M2a macrophages compared to PCL films. The interesting findings obtained for the rhombus architecture represent a starting point for the design of scaffolds able to modulate macrophage phenotype, prompting investigations addressed to verify their ability to facilitate the healing process in vivo.

7.
Acta Biomater ; 165: 111-124, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283613

RESUMO

Bone fractures are one of the most common traumatic large-organ injuries and although many fractures can heal on their own, 2-12% of fractures are slow healing or do not heal (non-unions). Autologous grafts are currently used for treatment of non-unions but are associated with limited healthy bone tissue. Tissue engineered cell-based products have promise for an alternative treatment method. It was previously demonstrated that cartilaginous microspheroids of periosteum-derived cells could be assembled into scaffold-free constructs and heal murine critically-sized long bone defects (non-unions). However, the handleability of such scaffold-free implants can be compromised when scaling-up. In this work, cartilaginous spheroids were combined with melt electrowritten (MEW) meshes to create an engineered cell-based implant, able to induce in vivo bone formation. MEW polycaprolactone meshes were tailored to contain pores (116 ± 28 µm) of a size that captured microspheroids (180 ± 15 µm). Periosteum-derived microspheroids pre-cultured for 4 days, were seeded on MEW meshes and gene expression analysis demonstrated up-regulation of chondrogenic (SOX9, COL2) and prehypertrophic (VEGF) gene markers after 14 days, creating a biohybrid sheet. When implanted subcutaneously (4 weeks), the biohybrid sheets mineralized (23 ± 3% MV/TV) and formed bone and bone marrow. Bone formation was also observed when implanted in a murine critically-sized long bone defect, though a high variation between samples was detected. The high versatility of this biofabrication approach lies in the possibility to tailor the scaffolds to shape and dimensions corresponding to the large bone defects and the individual patient using robust bone forming building blocks. These strategies are instrumental in the development of personalized regenerative therapies with predictive clinical outcomes. STATEMENT OF SIGNIFICANCE: Successful treatments for healing of large long bone defects are still limited and 2-12% of fractures do not heal properly. We combined a novel biofabrication technique: melt electrowriting (MEW), with robust biology: bone forming cartilaginous spheroids to create biohybrid sheets able to form bone upon implantation. MEW enabled the fabrication of scaffolds with micrometer-sized fibers in defined patterns which allowed the capturing of and merging with cartilaginous spheroids which had the potency to mature into bone via the developmental process of endochondral ossification. The present study contributes to the rapidly growing field of "Biofabrication with Spheroid and Organoid Materials'' and demonstrates design considerations that are of great importance for biofabrication of functional tissues through the assembly of cellular spheroids.


Assuntos
Cartilagem , Fraturas Ósseas , Humanos , Camundongos , Animais , Engenharia Tecidual/métodos , Osteogênese , Cicatrização , Periósteo , Alicerces Teciduais
8.
Macromol Biosci ; 23(1): e2200387, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36222273

RESUMO

Sensory innervation of the skin is essential for its function, homeostasis, and wound healing mechanisms. Thus, to adequately model the cellular microenvironment and function of native skin, in vitro human skin equivalents (hSE) containing a sensory neuron population began to be researched. In this work, a fully human 3D platform of hSE innervated by induced pluripotent stem cell-derived nociceptor neurospheres (hNNs), mimicking the native mode of innervation, is established. Both the hSE and nociceptor population exhibit morphological and phenotypical characteristics resembling their native counterparts, such as epidermal and dermal layer formation and nociceptor marker exhibition, respectively. In the co-culture platform, neurites develop from the hNNs and navigate in 3D to innervate the hSE from a distance. To probe both skin and nociceptor functionality, a clinically available capsaicin patch (Qutenza) is applied directly over the hSE section and neuron reaction is analyzed. Application of the patch causes an exposure time-dependent neurite regression and degeneration. In platforms absent of hSE, axonal degeneration is further increased, highlighting the role of the skin construct as a barrier. In sum, an in vitro tool of functional innervated skin with high interest for preclinical research is established.


Assuntos
Células Receptoras Sensoriais , Pele , Humanos , Cicatrização , Neuritos , Células Cultivadas
9.
ACS Mater Lett ; 4(4): 701-706, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36568348

RESUMO

Smart polymeric biomaterials have been the focus of many recent biomedical studies, especially those with adaptability to defects and potential to be implanted in the human body. Herein we report a versatile and straightforward method to convert non-thermoresponsive hydrogels into thermoresponsive systems with shape memory ability. As a proof of concept, a thermoresponsive polyurethane mesh was embedded within a methacrylated chitosan (CHTMA), gelatin (GELMA), laminarin (LAMMA) or hyaluronic acid (HAMA) hydrogel network, which afforded hydrogel composites with shape memory ability. With this system, we achieved good to excellent shape fixity ratios (50-90%) and excellent shape recovery ratios (∼100%, almost instantaneously) at body temperature (37 °C). Cytocompatibility tests demonstrated good viability either with cells on top or encapsulated during all shape memory processes. This straightforward approach opens a broad range of possibilities to convey shape memory properties to virtually any synthetic or natural-based hydrogel for several biological and nonbiological applications.

10.
Biomater Adv ; 143: 213183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371971

RESUMO

Despite tissue engineering advances, current nerve guidance conduits (NGCs) are still failing in repairing critical-sized defects. This study aims, therefore, at tackling large nerve gaps (2 cm) by designing NGCs possessing refined physicochemical properties enhancing the activity of Schwann cells (SCs) that support nerve regeneration over long distances. As such, a combinatorial strategy adopting novel plasma-induced surface chemistry and architectural heterogeneity was considered. A mechanically suitable copolymer (Polyactive®) was electrospun to produce nanofibrous NGCs mimicking the extracellular matrix. An innovative seamless double-layered architecture consisting of an inner wall comprised of bundles of aligned fibers with intercalated random fibers and an outer wall fully composed of random fibers was conceived to synergistically provide cell guidance cues and sufficient nutrient inflow. NGCs were subjected to argon plasma treatments using a dielectric barrier discharge (DBD) and a plasma jet (PJ). Surface chemical changes were examined by advanced X-ray photoelectron spectroscopy (XPS) micro-mappings. The DBD homogeneously increased the surface oxygen content from 17 % to 28 % on the inner wall. The PJ created a gradient chemistry throughout the inner wall with an oxygen content gradually increasing from 21 % to 30 %. In vitro studies revealed enhanced primary SC adhesion, elongation and proliferation on plasma-treated NGCs. A cell gradient was observed on the PJ-treated NGCs thus underlining the favorable oxygen gradient in promoting cell chemotaxis. A gradual change from circular to highly elongated SC morphologies mimicking the bands of Büngner was visualized along the gradient. Overall, plasma-treated NGCs are promising candidates paving the way towards critical nerve gap repair.


Assuntos
Regeneração Tecidual Guiada , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química , Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Polímeros/química , Oxigênio
11.
ACS Appl Mater Interfaces ; 14(28): 31567-31585, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35815638

RESUMO

Nerves and blood vessels are present in most organs and are indispensable for their function and homeostasis. Within these organs, neurovascular (NV) tissue forms congruent patterns and establishes vital interactions. Several human pathologies, including diabetes type II, produce NV disruptions with serious consequences that are complicated to study using animal models. Complex in vitro organ platforms, with neural and vascular supply, allow the investigation of such interactions, whether in a normal or pathological context, in an affordable, simple, and direct manner. To date, a few in vitro models contain NV tissue, and most strategies report models with nonbiomimetic representations of the native environment. To this end, we have established here an NV platform that contains mature vasculature and neural tissue, composed of human microvascular endothelial cells (HMVECs), induced pluripotent stem cell (iPSCs)-derived sensory neurons, and primary rat Schwann cells (SCs) within a fibrin-embedded polymeric scaffold. First, we show that SCs can induce the formation of and stabilize vascular networks to the same degree as the traditional and more thoroughly studied human dermal fibroblasts (HDFs). We also show that through SC prepatterning, we are able to control vessel orientation. Using our NV platform, we demonstrate the concomitant formation of three-dimensional neural and vascular tissue, and the influence of different medium formulations and cell types on the NV tissue outcome. Finally, we propose a protocol to form mature NV tissue, via the integration of independent neural and vascular constituents. The platform described here provides a versatile and advanced model for in vitro research of the NV axis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tecido Nervoso , Animais , Biomimética , Células Endoteliais/metabolismo , Humanos , Ratos , Células de Schwann/metabolismo
12.
Biomater Sci ; 10(17): 4740-4755, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35861034

RESUMO

Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation. We employed modular mixing of two synthetic benzene-1,3,5-tricarboxamide (BTA) architectures: a small molecule water-soluble BTA with slow exchange dynamics and a telechelic polymeric BTA-PEG-BTA with fast exchange dynamics. Copolymerisation of these two supramolecular architectures was observed, and all tested formulations formed stable hydrogels in water and cell culture media. We found that rational tuning of mechanical and viscoelastic properties is possible by mixing BTA with BTA-PEG-BTA. These hydrogels showed high viability for both chondrocyte (ATDC5) and human dermal fibroblast (HDF) encapsulation (>80%) and supported neuronal outgrowth (PC12 and dorsal root ganglion, DRG). Furthermore, ATDC5s and human mesenchymal stem cells (hMSCs) were able to form spheroids within these viscoelastic hydrogels, with control over cell aggregation modulated by the dynamic properties of the material. Overall, this study shows that modular mixing of supramolecular architectures enables tunable fibrous hydrogels, creating a biomimetic environment for cell encapsulation. These materials are suitable for the formation and culture of spheroids in 3D, critical for upscaling tissue engineering approaches towards cell densities relevant for physiological tissues.


Assuntos
Biomimética , Hidrogéis , Benzamidas , Benzeno , Humanos , Hidrogéis/química , Água
13.
ACS Appl Mater Interfaces ; 14(25): 28628-28638, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35715217

RESUMO

Tissue-engineered constructs are currently limited by the lack of vascularization necessary for the survival and integration of implanted tissues. Hydrogen sulfide (H2S), an endogenous signaling gas (gasotransmitter), has been recently reported as a promising alternative to growth factors to mediate and promote angiogenesis in low concentrations. Yet, sustained delivery of H2S remains a challenge. Herein, we have developed angiogenic scaffolds by covalent attachment of an H2S donor to a polycaprolactone (PCL) electrospun scaffold. These scaffolds were engineered to include azide functional groups (on 1, 5, or 10% of the PCL end groups) and were modified using a straightforward click reaction with an alkyne-functionalized N-thiocarboxyanhydride (alkynyl-NTA). This created H2S-releasing scaffolds that rely on NTA ring-opening in water followed by conversion of released carbonyl sulfide into H2S. These functionalized scaffolds showed dose-dependent release of H2S based on the amount of NTA functionality within the scaffold. The NTA-functionalized fibrous scaffolds supported human umbilical vein endothelial cell (HUVEC) proliferation, formed more confluent endothelial monolayers, and facilitated the formation of tight cell-cell junctions to a greater extent than unfunctionalized scaffolds. Covalent conjugation of H2S donors to scaffolds not only promotes HUVEC proliferation in vitro, but also increases neovascularization in ovo, as observed in the chick chorioallantoic membrane assay. NTA-functionalized scaffolds provide localized control over vascularization through the sustained delivery of a powerful endogenous angiogenic agent, which should be further explored to promote angiogenesis in tissue engineering.


Assuntos
Sulfeto de Hidrogênio , Animais , Membrana Corioalantoide , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Neovascularização Fisiológica , Engenharia Tecidual , Alicerces Teciduais
14.
Biofabrication ; 14(1)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34736244

RESUMO

Functional humanizedin vitronerve models are coveted as an alternative to animal models due to their ease of access, lower cost, clinical relevance and no need for recurrent animal sacrifice. To this end, we developed a sensory nerve model using induced pluripotent stem cells-derived nociceptors that are electrically active and exhibit a functional response to noxious stimuli. The differentiated neurons were co-cultured with primary Schwann cells on an aligned microfibrous scaffold to produce biomimetic peripheral nerve tissue. Compared to glass coverslips, our scaffold enhances tissue development and stabilization. Using this model, we demonstrate that myelin damage can be induced from hyperglycemia exposure (glucose at 45 mM) and mitigated by epalrestat (1µM) supplementation. Through fibrin embedding of the platform, we were able to create 3D anisotropic myelinated tissue, reaching over 6.5 mm in length. Finally, as a proof-of-concept, we incorporated pancreatic pseudoislets and endometrial organoids into our nerve platform, to demonstrate the potential in generating nociceptor innervation models. In summary, we propose here an improved tool for neurobiology research with potential applications in pathology modeling, drug screening and target tissue innervation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nociceptores , Animais , Diferenciação Celular , Humanos , Bainha de Mielina , Nociceptores/fisiologia , Nervos Periféricos , Células de Schwann
15.
Trends Endocrinol Metab ; 32(8): 623-638, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34127366

RESUMO

Nerves and blood vessels (BVs) establish extensive arborized networks to innervate tissues and deliver oxygen/metabolic support. Developmental cues direct the formation of these intricate and often overlapping patterns, which reflect close interactions within the peripheral neurovascular system. Besides the mutual dependence to survive and function, nerves and BVs share several receptors and ligands, as well as principles of differentiation, growth and pathfinding. Neurovascular (NV) interactions are maintained in adult life and are essential for certain regenerative mechanisms, such as wound healing. In pathological situations (e.g., type 2 diabetes mellitus), the NV system can be severely perturbed and become dysfunctional. Unwanted neural growth and vascularization are also associated with the progression of some pathologies, such as cancer and endometriosis. In this review, we describe the fundamental NV interactions in development, highlighting the similarities between both networks and wiring mechanisms. We also describe the NV contribution to regenerative processes and potential pathological dysfunctions. Finally, we provide an overview of current in vitro models used to replicate and investigate the NV ecosystem, addressing present limitations and future perspectives.


Assuntos
Vasos Sanguíneos/fisiologia , Nervos Periféricos/fisiologia , Diferenciação Celular , Diabetes Mellitus Tipo 2 , Endometriose , Feminino , Humanos , Neoplasias , Cicatrização
16.
ACS Appl Mater Interfaces ; 13(25): 29293-29302, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128651

RESUMO

Biological recognition sites are very useful for biomedical purposes and, more specifically, for polymeric scaffolds. However, synthetic polymers are not capable of providing specific biological recognition sites. To solve this inconvenience, functionalization of biological moieties is typically performed, oftentimes via peptide binding. In this sense, the main task is capturing the biological complexity of a protein. This study proposes a possible alternative solution to this challenge. Our approach is based on the combination of molecular imprinting (MI) and electrospinning processes. We propose here an alternative MI approach with polymeric structures, instead of using cross-linkers and monomers as conventionally performed. Different PCL-protein scaffolds were produced via electrospinning before performing MI. Gelatin, collagen, and elastin were used as proteins. Results evidenced that the MI process conducted with PCL electrospun membranes was carried out with ionic interactions between the desired molecules and the recognition sites formed. In addition, it has been proved that MI was more efficient when using gelatin as a template. This approach opens a new stage in the development of recognition sites in scaffolds obtained with synthetic polymers and their application for biomedical purposes.


Assuntos
Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Poliésteres/química , Proteínas/química , Gelatina/química , Nanofibras/química
17.
J Biomed Mater Res A ; 109(9): 1600-1612, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33665968

RESUMO

The creation of skeletal muscle tissue in vitro is a major topic of interest today in the field of biomedical research, due to the lack of treatments for muscle loss due to traumatic accidents or disease. For this reason, the intrinsic properties of nanofibrillar structures to promote cell adhesion, proliferation, and cell alignment presents an attractive tool for regenerative medicine to recreate organized tissues such as muscle. Electrospinning is one of the processing techniques often used for the fabrication of these nanofibrous structures and the combination of synthetic and natural polymers is often required to achieve optimal mechanical and physiochemical properties. Here, polycaprolactone (PCL) is selected as a synthetic polymer used for the fabrication of scaffolds, and the effect of protein addition on the final scaffolds' properties is studied. Collagen and gelatin were the proteins selected and two different concentrations were analyzed (2 and 4 wt/vol%). Different PCL/protein systems were prepared, and a structural, mechanical and functional characterization was performed. The influence of fiber alignment on the properties of the final scaffolds was assessed through morphological, mechanical and biological evaluations. A bioreactor was used to promote cell proliferation and differentiation within the scaffolds. The results revealed that protein addition produced a decrease in the fiber size of the membranes, an increase in their hydrophilicity, and a softening of their mechanical properties. The biological study showed the ability of the selected systems to harbor cells, allow their growth and, potentially, develop musculoskeletal tissues.


Assuntos
Colágeno/farmacologia , Gelatina/farmacologia , Músculo Esquelético/fisiologia , Poliésteres/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Colágeno/ultraestrutura , Módulo de Elasticidade , Peixes , Gelatina/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Nanofibras/química , Nanofibras/ultraestrutura , Estresse Mecânico
18.
Biomaterials ; 257: 120230, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32736264

RESUMO

In vitro peripheral nerve models provide valuable tools to study neurobiology questions and assess drug performance, in a regenerative or pathology context. To this end, we have developed a representative model of the peripheral nerve that displays three-dimensional (3D) neural anisotropy and myelination, which we showcase here as a simple and low-cost platform for drug screening. The model is composed of three main parts, including rat primary Schwann cells (SCs) seeded onto an electrospun scaffold to create bands of Büngner (BoB), primed PC12 cells as neuronal cell population, and a fibrin hydrogel to provide three-dimensionality. We also validated the use of primed PC12 as a neuron population by comparing it to rat dorsal root ganglions (DRGs) neurons. In both models we could obtain well aligned neurites and mature myelin segments. In short term cultures (7 days), we found that the addition of exogenous SCs enhanced neurite length and neurite growth area, compared to scaffolds with a laminin coating only. Addition of fibrin also lead to increased outgrowth of DRG and primed PC12 neurites, compared to 2D cultures. Moreover, neurite outgrowth in fibrin cultures was simultaneously multiplanar and anisotropic, suggesting that the SC-seeded scaffold can direct not only the growth of adjacent neurites, but also those growing above it. These results highlight the feasibility of the combination of a SC pre-seeded scaffold with a fibrin hydrogel, to direct and improve neurite growth in 3D. To demonstrate the model potential, we tested our platform at an immature (7 days in vitro) and mature state (28 days in vitro) of development. At the immature stage we could inhibit neurite growth through protein blocking (via antibody binding) and show suramin (200 µM) neurotoxicity on cells. At the mature stage, when myelin is compact, we exposed cells to hyperglycemic conditions (45 mM glucose) to mimic diabetic conditions and showed that myelin deforms consequently. Moreover, we demonstrated that by supplementing cultures with epalrestat (1 µM), myelin deformation can be partly prevented. In sum, we developed a biomimetic nerve platform using an affordable and accessible cell line as neuronal population, which displays similar results to primary neurons, but does not require recurrent animal sacrifice. This platform holds great promise as it can be used to conveniently and inexpensively perform drug screenings on peripheral nerve-like tissue, in a normal or pathological state.


Assuntos
Biomimética , Neuritos , Animais , Células Cultivadas , Gânglios Espinais , Bainha de Mielina , Ratos , Células de Schwann
19.
Biofabrication ; 12(4): 045001, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32498043

RESUMO

Controlling angiogenesis within tissue engineered constructs remains a critical challenge, especially with regard to the guidance of pre-vascular network formation. Here, we aimed to regulate angiogenesis on a self-assembled honeycomb nanofibrous scaffold. Scaffolds with honeycombs patterns have several desirable properties for tissue engineering, including large surface area, high structural stability and good permeability. Furthermore, the honeycomb pattern resembles early vascular network formation. The self-assembly electrospinning approach to honeycomb scaffolds is a technically simple, rapid, and direct way to realize selective deposition of nanofibers. To evaluate cell compatibility, spreading, proliferation and tube formation, human umbilical vein endothelial cells (HUVECs) were cultured on honeycomb scaffolds, as well as on random scaffolds for comparison. The optimized honeycomb nanofibrous scaffolds were observed to better support cell proliferation and network formation, which can facilitate angiogenesis. Moreover, HUVECs cultured on the honeycomb scaffolds were observed to reorganize their cell bodies into tube-like structures containing a central lumen, while this was not observed on random scaffolds. This work has shown that the angiogenic response can be guided by honeycomb scaffolds, allowing improved early HUVECs organization. The guided organization via honeycomb scaffolds can be utilized for tissue engineering applications that require the formation of microvascular networks.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Morfogênese , Nanofibras/química , Engenharia Tecidual , Alicerces Teciduais/química , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Neovascularização Fisiológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
20.
Chem Rev ; 120(19): 10547-10607, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32407108

RESUMO

Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.


Assuntos
Bioimpressão , Modelos Biológicos , Impressão Tridimensional , Engenharia Tecidual , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA