Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Mater Lett ; 4(4): 701-706, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36568348

RESUMO

Smart polymeric biomaterials have been the focus of many recent biomedical studies, especially those with adaptability to defects and potential to be implanted in the human body. Herein we report a versatile and straightforward method to convert non-thermoresponsive hydrogels into thermoresponsive systems with shape memory ability. As a proof of concept, a thermoresponsive polyurethane mesh was embedded within a methacrylated chitosan (CHTMA), gelatin (GELMA), laminarin (LAMMA) or hyaluronic acid (HAMA) hydrogel network, which afforded hydrogel composites with shape memory ability. With this system, we achieved good to excellent shape fixity ratios (50-90%) and excellent shape recovery ratios (∼100%, almost instantaneously) at body temperature (37 °C). Cytocompatibility tests demonstrated good viability either with cells on top or encapsulated during all shape memory processes. This straightforward approach opens a broad range of possibilities to convey shape memory properties to virtually any synthetic or natural-based hydrogel for several biological and nonbiological applications.

2.
Biomacromolecules ; 21(6): 2208-2217, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243138

RESUMO

Supramolecular and dynamic biomaterials hold promise to recapitulate the time-dependent properties and stimuli-responsiveness of the native extracellular matrix (ECM). Host-guest chemistry is one of the most widely studied supramolecular bonds, yet the binding characteristics of host-guest complexes (ß-CD/adamantane) in relevant biomaterials have mostly focused on singular host-guest interactions or nondiscrete multivalent pendent polymers. The stepwise synergistic effect of multivalent host-guest interactions for the formation of dynamic biomaterials remains relatively unreported. In this work, we study how a series of multivalent adamantane (guest) cross-linkers affect the overall binding affinity and ability to form supramolecular networks with alginate-CD (Alg-CD). These binding constants of the multivalent cross-linkers were determined via NMR titrations and showed increases in binding constants occurring with multivalent constructs. The higher multivalent cross-linkers enabled hydrogel formation; furthermore, an increase in binding and gelation was observed with the inclusion of a phenyl spacer to the cross-linker. A preliminary screen shows that only cross-linking Alg-CD with an 8-arm-multivalent guest results in robust gel formation. These cytocompatible hydrogels highlight the importance of multivalent design for dynamically cross-linked hydrogels. These materials hold promise for development toward cell- and small molecule-delivery platforms and allow discrete and fine-tuning of network properties.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Alginatos , Polímeros
3.
Adv Healthc Mater ; 7(8): e1701164, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349931

RESUMO

Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration.


Assuntos
Materiais Biomiméticos , Regeneração Tecidual Guiada/métodos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/fisiologia , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia
4.
Nanomedicine ; 10(7): 1559-69, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24792217

RESUMO

Interactions between Schwann cells (SCs) and scaffolds are important for tissue development during nerve regeneration, because SCs physiologically assist in directing the growth of regenerating axons. In this study, we prepared electrospun scaffolds combining poly (3-hydroxybutyrate) (PHB) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) functionalized with either collagen I, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS), H-Tyr-Ile-Gly-Ser-Arg-NH2 (YIGSR), or H-Arg-Asn-Ile-Ala-Glu-Ile-Ile-Lys-Asp-Ile-OH (p20) neuromimetic peptides to mimic naturally occurring ECM motifs for nerve regeneration. Cells cultured on fibrous mats presenting these biomolecules showed a significant increase in metabolic activity and proliferation while exhibiting unidirectional orientation along the orientation of the fibers. Real-time PCR showed cells cultured on peptide-modified scaffolds had a significantly higher neurotrophin expression compared to those on untreated nanofibers. Our study suggests that biofunctionalized aligned PHB/PHBV nanofibrous scaffolds may elicit essential cues for SCs activity and could serve as a potential scaffold for nerve regeneration. From the clinical editor: Nanotechnology-based functionalized scaffolds represent one of the most promising approaches in peripheral nerve recovery, as well as spinal cord recovery. In this study, bio-functionalized and aligned PHB/PHBV nanofibrous scaffolds were found to elicit essential cues for Schwann cell activity, therefore could serve as a potential scaffold for nerve regeneration.


Assuntos
Nanofibras , Peptídeos/química , Poli-Hidroxialcanoatos/química , Células de Schwann/citologia , Alicerces Teciduais , Ensaio de Imunoadsorção Enzimática , Humanos , Microscopia Eletrônica de Varredura , Proibitinas , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA