Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561490

RESUMO

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Assuntos
Doença Enxerto-Hospedeiro , Terapia de Imunossupressão , Células-Tronco Mesenquimais , Receptores de Antígenos Quiméricos , Animais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Terapia de Imunossupressão/métodos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Linfócitos T/imunologia , Caderinas/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
2.
Elife ; 112022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713402

RESUMO

The ability to regulate gene activity spatially and temporally is essential to investigate cell-type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here, we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression,>99% reduction of endogenous gene expression, and recapitulated known indel loss-of-function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss-of-function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox-responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.


Assuntos
Sistemas CRISPR-Cas , Peixe-Zebra , Alelos , Animais , Integrases/genética , Integrases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Dev Dyn ; 251(8): 1267-1290, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35266256

RESUMO

BACKGROUND: Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS: Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION: Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.


Assuntos
Células-Tronco Neurais , Proteína 4 de Ligação ao Retinoblastoma , Proteína Supressora de Tumor p53 , Peixe-Zebra , Acetilação , Animais , Apoptose/genética , Ciclo Celular/genética , Humanos , Células-Tronco Neurais/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
4.
Bio Protoc ; 11(14): e4100, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395736

RESUMO

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Multiple design strategies for zebrafish gene targeting have previously been reported with widely varying frequencies for germline recovery of integration alleles. The GeneWeld protocol and pGTag (plasmids for Gene Tagging) vector series provide a set of resources to streamline precision gene targeting in zebrafish. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at a CRISPR/Cas induced DNA double-strand break. The pGTag vectors contain reporters flanked by a universal CRISPR sgRNA sequence to liberate the targeting cassette in vivo and expose homology arms for homology-driven integration. Germline transmission rates for precision-targeted integration alleles range 22-100%. Our system provides a streamlined, straightforward, and cost-effective approach for high-efficiency gene targeting applications in zebrafish. Graphic abstract: GeneWeld method for CRISPR/Cas9 targeted integration.

5.
Theriogenology ; 170: 107-116, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34004455

RESUMO

The ability to efficiently introduce site-specific genetic modifications to the mammalian genome has been dramatically improved with the use of the CRISPR/Cas9 system. CRISPR/Cas9 is a powerful tool used to generate genetic modifications by causing double-strand breaks (DSBs) in DNA. Artemis (ART; also known as DCLRE1C), is a nuclear protein and is essential for DSB end joining in DNA repair via the canonical non-homologous end joining (c-NHEJ) pathway. In this work, we tested whether ART deficiency affects DNA repair following CRISPR/Cas9 induced DSBs in somatic cells. We also demonstrated the effect of microinjection timing on embryo developmental ability and gene targeting efficiency of CRISPR/Cas9 system to disrupt the interleukin 2 receptor subunit gamma (IL2RG) locus using porcine in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) derived embryos. In comparison to non-injected controls, CRISPR/Cas9 injection of IVF derived zygotes at 4 h and 8 h after fertilization did not impact cleavage and blastocyst rate. Gene modification rate was observed to be higher, 53.3% (9/16) in blastocysts injected 4 h post-fertilization as compared to 11.1% (1/9) in blastocysts injected 8 h post-fertilization. Microinjection 8 h after chemical activation of SCNT derived embryos decreased blastocyst development rate compared to non-injected controls but showed a higher gene modification efficiency of 66.7% as compared to 25% in the 4 h post-activation injection group. Furthermore, we observed that male ART-/- and ART+/- porcine fetal fibroblast (pFF) cells showed lower modification rates (2.5% and 1.9%, respectively) as compared to the ART intact cell line (8.3%). Interestingly, the female ART-/- and ART+/- pFF cells had modification rates (4.2% and 10.1%, respectively) similar to those seen in the ART intact cells. This study demonstrates the complex effect of various parameters such as microinjection timing and ART deficiency on gene editing efficiency in in vitro derived porcine embryos.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Feminino , Fertilização in vitro/veterinária , Edição de Genes/veterinária , Masculino , Microinjeções/veterinária , Suínos
6.
Elife ; 92020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412410

RESUMO

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Here, we describe a set of resources to streamline reporter gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology arms. We observed high rates of germline transmission (22-100%) for targeted knock-ins at eight zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system provides a straightforward and cost-effective approach for high efficiency gene targeting applications in CRISPR and TALEN compatible systems.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Introdução de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas Associadas a CRISPR/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação , Homologia de Sequência do Ácido Nucleico , Sus scrofa , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
7.
CRISPR J ; 2(6): 417-433, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742435

RESUMO

CRISPR and CRISPR-Cas effector proteins enable the targeting of DNA double-strand breaks to defined loci based on a variable length RNA guide specific to each effector. The guide RNAs are generally similar in size and form, consisting of a ∼20 nucleotide sequence complementary to the DNA target and an RNA secondary structure recognized by the effector. However, the effector proteins vary in protospacer adjacent motif requirements, nuclease activities, and DNA binding kinetics. Recently, ErCas12a, a new member of the Cas12a family, was identified in Eubacterium rectale. Here, we report the first characterization of ErCas12a activity in zebrafish and expand on previously reported activity in human cells. Using a fluorescent reporter system, we show that CRISPR-ErCas12a elicits strand annealing mediated DNA repair more efficiently than CRISPR-Cas9. Further, using our previously reported gene targeting method that utilizes short homology, GeneWeld, we demonstrate the use of CRISPR-ErCas12a to integrate reporter alleles into the genomes of both zebrafish and human cells. Together, this work provides methods for deploying an additional CRISPR-Cas system, thus increasing the flexibility researchers have in applying genome engineering technologies.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Animais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , DNA/química , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma/genética , Humanos , RNA/química , RNA Guia de Cinetoplastídeos/química , Peixe-Zebra/genética
8.
Nucleic Acids Res ; 47(W1): W175-W182, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31127311

RESUMO

The discovery and development of DNA-editing nucleases (Zinc Finger Nucleases, TALENs, CRISPR/Cas systems) has given scientists the ability to precisely engineer or edit genomes as never before. Several different platforms, protocols and vectors for precision genome editing are now available, leading to the development of supporting web-based software. Here we present the Gene Sculpt Suite (GSS), which comprises three tools: (i) GTagHD, which automatically designs and generates oligonucleotides for use with the GeneWeld knock-in protocol; (ii) MEDJED, a machine learning method, which predicts the extent to which a double-stranded DNA break site will utilize the microhomology-mediated repair pathway; and (iii) MENTHU, a tool for identifying genomic locations likely to give rise to a single predominant microhomology-mediated end joining allele (PreMA) repair outcome. All tools in the GSS are freely available for download under the GPL v3.0 license and can be run locally on Windows, Mac and Linux systems capable of running R and/or Docker. The GSS is also freely available online at www.genesculpt.org.


Assuntos
Bases de Dados Genéticas , Edição de Genes , Engenharia Genética/métodos , Software , Animais , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética
9.
AAPS J ; 21(3): 50, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963322

RESUMO

The advent of the genome editing era brings forth the promise of adoptive cell transfer using engineered chimeric antigen receptor (CAR) T cells for targeted cancer therapy. CAR T cell immunotherapy is probably one of the most encouraging developments for the treatment of hematological malignancies. In 2017, two CAR T cell therapies were approved by the US Food and Drug Administration: one for the treatment of pediatric acute lymphoblastic leukemia (ALL) and the other for adult patients with advanced lymphomas. However, despite significant progress in the area, CAR T cell therapy is still in its early days and faces significant challenges, including the complexity and costs associated with the technology. B cell lymphoma is the most common hematopoietic cancer in dogs, with an incidence approaching 0.1% and a total of 20-100 cases per 100,000 individuals. It is a widely accepted naturally occurring model for human non-Hodgkin's lymphoma. Current treatment is with combination chemotherapy protocols, which prolong life for less than a year in canines and are associated with severe dose-limiting side effects, such as gastrointestinal and bone marrow toxicity. To date, one canine study generated CAR T cells by transfection of mRNA for CAR domain expression. While this was shown to provide a transient anti-tumor activity, results were modest, indicating that stable, genomic integration of CAR modules is required in order to achieve lasting therapeutic benefit. This commentary summarizes the current state of knowledge on CAR T cell immunotherapy in human medicine and its potential applications in animal health, while discussing the potential of the canine model as a translational system for immuno-oncology research.


Assuntos
Neoplasias Hematológicas/terapia , Imunoterapia Adotiva/métodos , Oncologia/métodos , Receptores de Antígenos Quiméricos/imunologia , Medicina Veterinária/métodos , Animais , Modelos Animais de Doenças , Cães , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/veterinária , Humanos , Resultado do Tratamento
10.
Dis Model Mech ; 11(6)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914980

RESUMO

In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafish retinoblastoma 1 (rb1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbb3a oncogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptomes shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbbp4). Germline mutant analysis confirms that zebrafish rb1, rbbp4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbbp4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CRISPR targeting plus live imaging of histone-H2A.F/Z-GFP fusion protein in developing larval brain to rapidly test the role of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbbp4 and its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in RB1 mutant brain cancer cells.This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigênese Genética , Histona Desacetilase 1/genética , Células-Tronco Neurais/metabolismo , Proteína do Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proliferação de Células/genética , Sobrevivência Celular , Histona Desacetilase 1/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Zebrafish ; 14(4): 343-356, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28192065

RESUMO

In the central nervous system injury induces cellular reprogramming and progenitor proliferation, but the molecular mechanisms that limit regeneration and prevent tumorigenesis are not completely understood. We previously described a zebrafish optic pathway tumor model in which transgenic Tg(flk1:RFP)is18/+ adults develop nonmalignant retinal tumors. Key pathways driving injury-induced glial reprogramming and regeneration contributed to tumor formation. In this study, we examine a time course of proliferation and present new analyses of the Tg(flk1:RFP)is18/+ dysplastic retina and tumor transcriptomes. Retinal dysplasia was first detected in 3-month-old adults, but was not limited to a specific stem cell or progenitor niche. Pathway analyses suggested a decrease in cellular respiration and increased expression of components of Hif1-α, VEGF, mTOR, NFκß, and multiple interleukin pathways are associated with early retinal dysplasia. Hif-α targets VEGFA (vegfab) and Leptin (lepb) were both highly upregulated in dysplastic retina; however, each showed distinct expression patterns in neurons and glia, respectively. Phospho-S6 immunolabeling indicated that mTOR signaling is activated in multiple cell populations in wild-type retina and in the dysplastic retina and advanced tumor. Our results suggest that multiple pathways may contribute to the continuous proliferation of retinal progenitors and tumor growth in this optic pathway tumor model. Further investigation of these signaling pathways may yield insight into potential mechanisms to control the proliferative response during regeneration in the nervous system.


Assuntos
Proliferação de Células , Neoplasias Oculares/patologia , Leptina/metabolismo , Displasia Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Oculares/genética , Neoplasias Oculares/metabolismo , Regulação Neoplásica da Expressão Gênica , Leptina/genética , Displasia Retiniana/genética , Displasia Retiniana/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA