Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7825, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535940

RESUMO

Groundwater provides nearly half of irrigation water supply, and it enables resilience during drought, but in many regions of the world, it remains poorly, if at all managed. In heavily agricultural regions like California's Central Valley, where groundwater management is being slowly implemented over a 27-year period that began in 2015, groundwater provides two-thirds or more of irrigation water during drought, which has led to falling water tables, drying wells, subsiding land, and its long-term disappearance. Here we use nearly two decades of observations from NASA's GRACE satellite missions and show that the rate of groundwater depletion in the Central Valley has been accelerating since 2003 (1.86 km3/yr, 1961-2021; 2.41 km3/yr, 2003-2021; 8.58 km3/yr, 2019-2021), a period of megadrought in southwestern North America. Results suggest the need for expedited implementation of groundwater management in the Central Valley to ensure its availability during the increasingly intense droughts of the future.


Assuntos
Água Subterrânea , Abastecimento de Água , Agricultura , Água , California
2.
Rev Geophys ; 58(3): e2019RG000672, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879921

RESUMO

Global sea level provides an important indicator of the state of the warming climate, but changes in regional sea level are most relevant for coastal communities around the world. With improvements to the sea-level observing system, the knowledge of regional sea-level change has advanced dramatically in recent years. Satellite measurements coupled with in situ observations have allowed for comprehensive study and improved understanding of the diverse set of drivers that lead to variations in sea level in space and time. Despite the advances, gaps in the understanding of contemporary sea-level change remain and inhibit the ability to predict how the relevant processes may lead to future change. These gaps arise in part due to the complexity of the linkages between the drivers of sea-level change. Here we review the individual processes which lead to sea-level change and then describe how they combine and vary regionally. The intent of the paper is to provide an overview of the current state of understanding of the processes that cause regional sea-level change and to identify and discuss limitations and uncertainty in our understanding of these processes. Areas where the lack of understanding or gaps in knowledge inhibit the ability to provide the needed information for comprehensive planning efforts are of particular focus. Finally, a goal of this paper is to highlight the role of the expanded sea-level observation network-particularly as related to satellite observations-in the improved scientific understanding of the contributors to regional sea-level change.

3.
Nat Clim Chang ; 5(5): 358-369, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31534490

RESUMO

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.

4.
Sci Total Environ ; 695: 133843, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31421343

RESUMO

The freshwater resources in Africa are vulnerable to natural variabilities as well as anthropogenic interventions. In this study, temporal (April 2002-June 2017) Gravity Recovery and Climate Experiment (GRACE) data are integrated, in a geographic information system environment, with rainfall, temperature, evapotranspiration, and altimetry remote sensing datasets to monitor the short-term trends in terrestrial water storage (TWS) over the African hydrogeologic systems and to explore their origins. Results show that short-term trends over the African continent are largely driven by natural variability such as changes in rainfall, evapotranspiration, and associated variations in lake levels. Exceptions to this observation include central Africa, where deforestation is found to additionally drive changes in TWS, as well as northern Africa, where TWS changes are dominated by anthropogenic groundwater extraction from fossil aquifers. Findings highlight the need for integrative responses at local, national, regional, and international levels by the African nations to overcome current and future challenges related to freshwater availability in Africa.

5.
Proc Natl Acad Sci U S A ; 115(6): E1080-E1089, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358394

RESUMO

Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤-0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (-71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71-82 km3/y) but negative for models (-450 to -12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA