Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4826, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446640

RESUMO

Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement.


Assuntos
Actomiosina/genética , Regulação da Expressão Gênica no Desenvolvimento , Fosfatase de Miosina-de-Cadeia-Leve/genética , Neovascularização Fisiológica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases/genética , Proteínas Repressoras/genética , Actomiosina/metabolismo , Animais , Padronização Corporal/genética , Embrião de Mamíferos , Embrião não Mamífero , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Repressoras/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais , Peixe-Zebra
2.
Nat Commun ; 9(1): 4860, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451830

RESUMO

Canonical Wnt signaling is crucial for vascularization of the central nervous system and blood-brain barrier (BBB) formation. BBB formation and modulation are not only important for development, but also relevant for vascular and neurodegenerative diseases. However, there is little understanding of how Wnt signaling contributes to brain angiogenesis and BBB formation. Here we show, using high resolution in vivo imaging and temporal and spatial manipulation of Wnt signaling, different requirements for Wnt signaling during brain angiogenesis and BBB formation. In the absence of Wnt signaling, premature Sphingosine-1-phosphate receptor (S1pr) signaling reduces VE-cadherin and Esama at cell-cell junctions. We suggest that Wnt signaling suppresses S1pr signaling during angiogenesis to enable the dynamic junction formation during anastomosis, whereas later S1pr signaling regulates BBB maturation and VE-cadherin stabilization. Our data provides a link between brain angiogenesis and BBB formation and identifies Wnt signaling as coordinator of the timing and as regulator of anastomosis.


Assuntos
Antígenos CD/genética , Encéfalo/metabolismo , Caderinas/genética , Neovascularização Fisiológica/genética , Receptores de Lisoesfingolipídeo/genética , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , beta Catenina/genética , Animais , Animais Geneticamente Modificados , Antígenos CD/metabolismo , Barreira Hematoencefálica/crescimento & desenvolvimento , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/crescimento & desenvolvimento , Caderinas/metabolismo , Capilares/crescimento & desenvolvimento , Capilares/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Circulação Cerebrovascular/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Proteína Vermelha Fluorescente
3.
Nat Commun ; 9(1): 3545, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30171187

RESUMO

Angiogenesis and vascular remodeling are driven by extensive endothelial cell movements. Here, we present in vivo evidence that endothelial cell movements are associated with oscillating lamellipodia-like structures, which emerge from cell junctions in the direction of cell movements. High-resolution time-lapse imaging of these junction-based lamellipodia (JBL) shows dynamic and distinct deployment of junctional proteins, such as F-actin, VE-cadherin and ZO1, during JBL oscillations. Upon initiation, F-actin and VE-cadherin are broadly distributed within JBL, whereas ZO1 remains at cell junctions. Subsequently, a new junction is formed at the front of the JBL, which then merges with the proximal junction. Rac1 inhibition interferes with JBL oscillations and disrupts cell elongation-similar to a truncation in ve-cadherin preventing VE-cad/F-actin interaction. Taken together, our observations suggest an oscillating ratchet-like mechanism, which is used by endothelial cells to move over each other and thus provides the physical means for cell rearrangements.


Assuntos
Actinas/metabolismo , Antígenos CD/fisiologia , Caderinas/fisiologia , Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Pseudópodes/fisiologia , Animais , Animais Geneticamente Modificados , Comunicação Celular/fisiologia , Embrião não Mamífero , Junções Intercelulares/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
Autophagy ; 14(11): 1911-1927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30010465

RESUMO

VCP/p97 (valosin containing protein) is a key regulator of cellular proteostasis. It orchestrates protein turnover and quality control in vivo, processes fundamental for proper cell function. In humans, mutations in VCP lead to severe myo- and neuro-degenerative disorders such as inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS) or and hereditary spastic paraplegia (HSP). We analyzed here the in vivo role of Vcp and its novel interactor Washc4/Swip (WASH complex subunit 4) in the vertebrate model zebrafish (Danio rerio). We found that targeted inactivation of either Vcp or Washc4, led to progressive impairment of cardiac and skeletal muscle function, structure and cytoarchitecture without interfering with the differentiation of both organ systems. Notably, loss of Vcp resulted in compromised protein degradation via the proteasome and the macroautophagy/autophagy machinery, whereas Washc4 deficiency did not affect the function of the ubiquitin-proteasome system (UPS) but caused ER stress and interfered with autophagy function in vivo. In summary, our findings provide novel insights into the in vivo functions of Vcp and its novel interactor Washc4 and their particular and distinct roles during proteostasis in striated muscle cells.


Assuntos
Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Estriado/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteostase/genética , Proteína com Valosina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Deleção de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Estriado/patologia , Doenças Musculares/patologia , Ligação Proteica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA