Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0250710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043641

RESUMO

The phospholipid phosphatidylserine (PS) is a key signaling molecule and binding partner for many intracellular proteins. PS is normally found on the inner surface of the cell membrane, but PS can be flipped to the outer surface in a process called PS exposure. PS exposure is important in many cell functions, yet the mechanisms that control PS exposure have not been extensively studied. Copines (Cpn), found in most eukaryotic organisms, make up a family of calcium-dependent phospholipid binding proteins. In Dictyostelium, which has six copine genes, CpnA strongly binds to PS and translocates from the cytosol to the plasma membrane in response to a rise in calcium. Cells lacking the cpnA gene (cpnA-) have defects in adhesion, chemotaxis, membrane trafficking, and cytokinesis. In this study we used both flow cytometry and fluorescent microscopy to show that cpnA- cells have increased adhesion to beads and bacteria and that the increased adhesion was not due to changes in the actin cytoskeleton or cell surface proteins. We found that cpnA- cells bound higher amounts of Annexin V, a PS binding protein, than parental cells and showed that unlabeled Annexin V reduced the increased cell adhesion property of cpnA- cells. We also found that cpnA- cells were more sensitive to Polybia-MP1, which binds to external PS and induces cell lysis. Overall, this suggests that cpnA- cells have increased PS exposure and this property contributes to the increased cell adhesion of cpnA- cells. We conclude that CpnA has a role in the regulation of plasma membrane lipid composition and may act as a negative regulator of PS exposure.


Assuntos
Dictyostelium/efeitos dos fármacos , Dictyostelium/genética , Mutação , Fosfatidilserinas/farmacologia , Adesão Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dictyostelium/citologia , Proteínas de Protozoários/genética
2.
FEBS Open Bio ; 10(6): 979-994, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32351039

RESUMO

Copines are a family of cytosolic proteins that associate with membranes in a calcium-dependent manner and are found in many eukaryotic organisms. Dictyostelium discoideum has six copine genes (cpnA-cpnF), and cells lacking cpnA(cpnA- ) have defects in cytokinesis, chemotaxis, adhesion, and development. CpnA has also been shown to associate with the plasma membrane, contractile vacuoles (CV), and organelles of the endolysosomal pathway. Here, we use cpnA- cells to investigate the role of CpnA in CV function and endocytosis. When placed in water, cpnA- cells made abnormally large CVs that took longer to expel. Visualization of CVs with the marker protein GFP-dajumin indicated that cpnA- cells had fewer CVs that sometimes refilled before complete emptying. In endocytosis assays, cpnA- cells took up small fluorescent beads by macropinocytosis at rates similar to parental cells. However, cpnA- cells reached a plateau sooner than parental cells and had less fluorescence at later time points. p80 antibody labeling of postlysosomes (PL) indicated that there were fewer and smaller PLs in cpnA- cells. In dextran pulse-chase experiments, the number of PLs peaked earlier in cpnA- cells, and the PLs did not become as large and disappeared sooner as compared to parental cells. PLs in cpnA- cells were also shown to have more actin coats, suggesting CpnA may play a role in actin filament disassembly on PL membranes. Overall, these results indicate that CpnA is involved in the regulation of CV size and expulsion, and the maturation, size, and exocytosis of PLs.


Assuntos
Proteínas de Transporte/metabolismo , Dictyostelium/metabolismo , Exocitose , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Quimiotaxia , Dictyostelium/citologia , Dictyostelium/genética , Técnicas de Inativação de Genes , Genes Reporter , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Microscopia Intravital , Microscopia de Fluorescência , Proteínas de Protozoários/genética , Imagem com Lapso de Tempo
3.
Nat Cell Biol ; 22(3): 297-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066907

RESUMO

Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles that are presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by the Nesprin homologue Msp300 at the cytoplasmic surface of the nucleus. Msp300 recruits the microtubule minus-end protein Patronin, a calmodulin-regulated spectrin-associated protein (CAMSAP) homologue, which functions redundantly with Ninein to further recruit the microtubule polymerase Msps-a member of the XMAP215 family-to assemble non-centrosomal microtubules and does so independently of the widespread microtubule nucleation factor γ-Tubulin. Functionally, the fat body ncMTOC and the radial microtubule arrays that it organizes are essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture that regulates microtubules, serving vital functions.


Assuntos
Membrana Basal/metabolismo , Núcleo Celular , Centro Organizador dos Microtúbulos/fisiologia , Actinas/fisiologia , Animais , Membrana Celular , Núcleo Celular/ultraestrutura , Centrossomo , Drosophila/metabolismo , Drosophila/ultraestrutura , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Endossomos/metabolismo , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/fisiologia , Proteínas Musculares/metabolismo , Tubulina (Proteína)/fisiologia
4.
Cells ; 8(7)2019 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330887

RESUMO

Copines make up a family of calcium-dependent, phospholipid-binding proteins found in numerous eukaryotic organisms. Copine proteins consist of two C2 domains at the N-terminus followed by an A domain similar to the von Willebrand A domain found in integrins. We are studying copine protein function in the model organism, Dictyostelium discoideum, which has six copine genes, cpnA-cpnF. Previous research showed that cells lacking the cpnA gene exhibited a cytokinesis defect, a contractile vacuole defect, and developmental defects. To provide insight into the role of CpnA in these cellular processes, we used column chromatography and immunoprecipitation to isolate proteins that bind to CpnA. These proteins were identified by mass spectrometry. One of the proteins identified was actin. Purified CpnA was shown to bind to actin filaments in a calcium-dependent manner in vitro. cpnA- cells exhibited defects in three actin-based processes: chemotaxis, cell polarity, and adhesion. These results suggest that CpnA plays a role in chemotaxis and adhesion and may do so by interacting with actin filaments.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Quimiotaxia , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/genética , Adesão Celular , Dictyostelium/fisiologia , Ligação Proteica , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA