Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747548

RESUMO

The efficient conversion of solar energy to chemical energy represents a critical bottleneck to the energy transition. Photocatalytic splitting of water to generate solar fuels is a promising solution. Semiconductor quantum dots (QDs) are prime candidates for light-harvesting components of photocatalytic heterostructures, given their size-dependent photophysical properties and band-edge energies. A promising series of heterostructured photocatalysts interface QDs with transition-metal oxides which embed midgap electronic states derived from the stereochemically active electron lone pairs of p-block cations. Here, we examine the thermodynamic driving forces and dynamics of charge separation in Sb2VO5/CdSe QD heterostructures, wherein a high density of Sb 5s2-derived midgap states are prospective acceptors for photogenerated holes. Hard-x-ray valence band photoemission spectroscopy measurements of Sb2VO5/CdSe QD heterostructures were used to deduce thermodynamic driving forces for charge separation. Interfacial charge transfer dynamics in the heterostructures were examined as a function of the mode of interfacial connectivity, contrasting heterostructures with direct interfaces assembled by successive ion layer adsorption and reaction (SILAR) and interfaces comprising molecular bridges assembled by linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate ultrafast (<2 ps) electron and hole transfer in SILAR-derived heterostructures, whereas LAA-derived heterostructures show orders of magnitude differentials in the kinetics of hole (<100 ps) and electron (∼1 ns) transfer. The interface-modulated kinetic differentials in electron and hole transfer rates underpin the more effective charge separation, reduced charge recombination, and greater photocatalytic efficiency observed for the LAA-derived Sb2VO5/CdSe QD heterostructures.

2.
Environ Technol ; : 1-42, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215094

RESUMO

AbstractBiochar derived from lignocellulosic biomass has been used as a low-cost adsorbent in wastewater treatment applications. Due to its rich porous structure and good electrical conductivity, biochar can be used as a cost-effective electrode material for capacitive deionization of water. In this work, willow biochar was prepared through carbonization of shrub willow chips, activated with potassium hydroxide, and loaded with manganese dioxide (WBC-K-MnO2 nanocomposite). The prepared materials were used to electrochemically adsorb Pb2+ from aqueous solutions. Under the applied potential of 1.0 V, the WBC-K-MnO2 electrode exhibited a high Pb2+ specific electrosorption capacity (23.3 mg/g) as compared to raw willow biochar (4.0 mg/g) and activated willow biochar (9.2 mg/g). KOH activation followed by MnO2 loading on the surface of raw biochar enhanced its BET surface area (178.7 m2/g) and mesoporous volume ratio (42.1%). Moreover, the WBC-K-MnO2 nanocomposite exhibited the highest specific capacitance value of 234.3 F/g at a scan rate of 5 mV/s. The electrosorption isotherms and kinetic data were well explained by the Freundlich and pseudo-second order models, respectively. The WBC-K-MnO2 electrode demonstrated excellent reusability with a Pb2+ electrosorption efficiency of 76.3% after 15 cycles. Thus, the WBC-K-MnO2 nanocomposite can serve as a promising candidate for capacitive deionization of heavy metal contaminated water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA