Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Am J Clin Nutr ; 118(5): 938-955, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657523

RESUMO

BACKGROUND: There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota. OBJECTIVES: We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population. METHODS: We conducted a 5-wk, 4-arm, parallel, double-blind, randomized, placebo-controlled trial in 92 healthy adults with mild-to-moderate levels of anxiety and depression. Subjects were randomized to oligofructose 8 g/d (plus 2 g/d maltodextrin); maltodextrin 10 g/d; oligofructose 8 g/d plus 2'fucosyllactose (2 g/d) or 2'fucosyllactose 2 g/d (plus 8 g/d maltodextrin). Changes in microbial load (fluorescence in situ hybridization-flow cytometry) and composition (16S ribosomal RNA sequencing) were the primary outcomes. Secondary outcomes included gastrointestinal sensations, bowel habits, and mood state parameters. RESULTS: There were significant increases in several bacterial taxa including Bifidobacterium, Bacteroides, Roseburia, and Faecalibacterium prausnitzii in both the oligofructose and oligofructose/2'fucosyllactose interventions (all P ≤ 0.05). Changes in bacterial taxa were highly heterogenous upon 2'fuscoyllactose supplementation. Significant improvements in Beck Depression Inventory, State Trait Anxiety Inventory Y1 and Y2, and Positive and Negative Affect Schedule scores and cortisol awakening response were detected across oligofructose, 2'fucosyllactose, and oligofructose/2'fucosyllactose combination interventions (all P ≤ 0.05). Both sole oligofructose and oligofructose/2'fuscosyllactose combination interventions outperformed both sole 2'fucosyllactose and maltodextrin in improvements in several mood state parameters (all P ≤ 0.05). CONCLUSION: The results of this study indicate that oligofructose and combination of oligofructose/2'fucosyllactose can beneficially alter microbial composition along with improving mood state parameters. Future work is needed to understand key microbial differences separating individual responses to 2'fucosyllactose supplementation. This trial was registered at clinicaltrials.gov as NCT05212545.


Assuntos
Frutanos , Inulina , Adulto , Humanos , Inulina/farmacologia , Frutanos/farmacologia , Hibridização in Situ Fluorescente , Prebióticos , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Bactérias , Método Duplo-Cego
3.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37653466

RESUMO

We explored the potential for the prebiotic oligofructose and prebiotic candidate 2'fucosyllactose, alone and in combination (50:50 blend) to induce physiologically relevant increases in neurotransmitter (γ-aminobutyric acid, serotonin, tryptophan, and dopamine) and organic acid (acetate, propionate, butyrate, lactate, and succinate) production as well as microbiome changes using anaerobic pH-controlled in vitro batch culture fermentations over 48 h. Changes in organic acid and neurotransmitter production were assessed by gas chromatography and liquid chromatography and, bacterial enumeration using fluorescence in situ hybridization, respectively. Both oligofructose and oligofructose/2'fucosyllactose combination fermentations induced physiologically relevant concentrations of γ-aminobutyric acid, acetate, propionate, butyrate, and succinate at completion (all P ≤ .05). A high degree of heterogeneity was seen amongst donors in both neurotransmitter and organic acid production in sole 2'FL fermentations suggesting a large responder/nonresponder status exists. Large increases in Bifidobacterium, Lactobacillus, and Bacteroides numbers were detected in oligofructose fermentation, smallest increases being detected in 2'fucosyllactose fermentation. Bacterial numbers in the combined oligofructose/2'fucosyllactose fermentation were closer to that of sole oligofructose. Our results indicate that oligofructose and oligofructose/2'fucosyllactose in combination have the potential to induce physiologically relevant increases in γ-aminobutyric and organic acid production along with offsetting the heterogenicity seen in response to sole 2'fucosyllactose supplementation.


Assuntos
Ácido Láctico , Propionatos , Hibridização in Situ Fluorescente , Butiratos , Dopamina , Prebióticos
4.
Front Microbiol ; 14: 1074637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910170

RESUMO

Although iron is an essential nutrient for humans, as well as for almost all other organisms, it is poorly absorbed (~15%) from the diet such that most passes through the upper gut into the large intestine. The colonic microbiota is thus exposed to, and potentially influenced by, such residual iron which could have an impact on human health. The aim of the research described here is to determine how the major forms of dietary iron (inorganic iron and haem) influence metabolic activity and composition of the human gut microbiota by utilizing an in vitro parallel, pH-controlled anaerobic batch culture approach. Controlled iron provision was enabled by the design of a 'modified' low-iron gut-model medium whereby background iron content was reduced from 28 to 5 µM. Thus, the impact of both low and high levels of inorganic and haem iron (18-180 µM and 7.7-77 µM, respectively) could be explored. Gut-microbiota composition was determined using next generation sequencing (NGS) based community profiling (16S rRNA gene sequencing) and flow-fluorescent in situ hybridization (FISH). Metabolic-end products (organic acids) were quantified using gas chromatography (GC) and iron incorporation was estimated by inductively coupled plasma optical emission spectroscopy (ICP-OES). Results showed that differences in iron regime induced significant changes in microbiota composition when low (0.1% w/v) fecal inoculation levels were employed. An increase in haem levels from 7.7 to 77 µM (standard levels employed in gut culture studies) resulted in reduced microbial diversity, a significant increase in Enterobacteriaceae and lower short chain fatty acid (SCFA) production. These effects were countered when 18 µM inorganic iron was also included into the growth medium. The results therefore suggest that high-dietary haem may have a detrimental effect on health since the resulting changes in microbiota composition and SCFA production are indicators of an unhealthy gut. The results also demonstrate that employing a low inoculum together with a low-iron gut-model medium facilitated in vitro investigation of the relationship between iron and the gut microbiota.

5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724263

RESUMO

AIMS: In this study, we explored the effects that the prebiotic inulin-type fructans, and prebiotic candidates: 2'fucosyllactose and ß-glucan from barley, singular and in combination had on microbial load, microbiome profile, and short-chain fatty acid production. This was carried out as a prescreening tool to determine combinations that could be taken forward for use in a human intervention trial. METHODS AND RESULTS: Effects of inulin-type fructans, 2'fucosyllactose and ß-glucan from barley in singular and combination on microbial load and profile and short-chain fatty acid production (SCFA) was conducted using in vitro batch culture fermentation over 48 h. Changes in microbial load and profile were assessed by fluorescence in situ hybridization flow cytometry (FISH-FLOW) and 16S rRNA sequencing, and changes in SCFA via gas chromatography. All substrates generated changes in microbial load and profile, achieving peak microbial load at 8 h fermentation with the largest changes in profile across all substrates in Bifidobacterium (Q < 0.05). This coincided with significant increases in acetate observed throughout fermentation (Q < 0.05). In comparison to sole supplementation combinations of oligofructose, ß-glucan and 2'fuscosyllactose induced significant increases in both propionate and butyrate producing bacteria (Roseburia and Faecalibacterium praunitzii), and concentrations of propionate and butyrate, the latter being maintained until the end of fermentation (all Q < 0.05). CONCLUSIONS: Combinations of oligofructose, with ß-glucan and 2'fucosyllactose induced selective changes in microbial combination and SCFA namely Roseburia, F. praunitzii, propionate and butyrate compared to sole supplementation.


Assuntos
Hordeum , beta-Glucanas , Humanos , Inulina/farmacologia , Inulina/metabolismo , Propionatos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Frutanos/farmacologia , Prebióticos , Butiratos , Fermentação , Hordeum/genética , Hordeum/metabolismo , Fezes/microbiologia
6.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724279

RESUMO

AIMS: Certain bacteria can produce gamma aminobutyric acid (GABA) from glutamate in the human intestinal tract, leading to the possibility of altering GABA levels through diet. To this end, we assessed the ability of seven commercially available probiotic supplements to produce GABA. METHOD AND RESULTS: Probiotic strains were compared for GABA production in pure culture. The bacteria were inoculated at a concentration of 107 CFU ml-1 in 10 ml MRS supplemented with monosodium glutamate (1% w/v), both with and without oligofructose-enriched inulin (OFI) (1% w/v). Two strains with the highest production of GABA were further assessed for 48 h in pH-controlled anaerobic batch cultures inoculated with faecal bacteria. Liquid chromatography-mass spectrometry (LC-MS) was used for quantification of GABA and microbiota composition was determined through 16S rRNA gene sequencing. Levilactobacillus brevis LB01 (CGMCC 16921) and Lactiplantibacillus plantarum 299v (DSM 9843) were the most efficient producers of GABA. High GABA levels (28.32 mmol l-1 ± 0.29) were produced by the probiotic strain L. brevis LB01 at pH 5.4-5.6. This was significantly higher than the levels of GABA produced by L. plantarum (4.8 mmol l-1 ± 6.8) and a negative control (2.9 mM ± 3.1). The addition of OFI did not further stimulate GABA production under the conditions tested. The ability of these strains to produce GABA in-vitro was further evaluated in a faecal microbiota environment. Once again, L.brevis LB01 produced the highest levels of GABA (40.24 mmol l-1 ± 20.98). CONCLUSIONS: L. brevis LB01 was found to be the most efficient probiotic strain, of those tested, for GABA production.


Assuntos
Levilactobacillus brevis , Probióticos , Humanos , RNA Ribossômico 16S/genética , Ácido gama-Aminobutírico/metabolismo , Intestinos , Fermentação
7.
Food Sci Nutr ; 11(1): 17-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655109

RESUMO

Inulin and oligofructose are classes of prebiotics belonging to a group of nondigestible carbohydrates referred to as inulin-type fructans. While short-chain fructooligosaccharides are enzymatically synthesized from the hydrolysis and transglycosylation of sucrose. Inulin-type fructans and short-chain fructooligosaccharides act as carbon sources for selective pathways supporting digestive health including altering the composition of the gut microbiota along with improving transit time. Due to their physicochemical properties, inulin-type fructans and short-chain fructooligosaccharides have been widely used in the food industry as partial replacements for both fat and sugar. Yet, levels of replacement need to be carefully considered as it may result in changes to physical and sensory properties that could be detected by consumers. Furthermore, it has been reported depending on the processing parameters used during production that inulin-type fructans and short-chain fructooligosaccharides may or may not undergo structural alterations. Therefore, this paper reviews the role of inulin-type fructans and short-chain fructooligosaccharides within the food industry as fat and sugar replacers and texture modifiers, their impact on final sensory properties, and to what degree processing parameters are likely to impact their functional properties.

8.
Microorganisms ; 10(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557589

RESUMO

Irritable Bowel Syndrome (IBS) is the most common gastrointestinal (GI) disorder in Western populations and therefore a major public health/economic concern. However, despite extensive research, psychological and physiological factors that contribute to the aetiology of IBS remain poorly understood. Consequently, clinical management of IBS is reduced to symptom management through various suboptimal options. Recent evidence has suggested human milk oligosaccharides (HMOs) as a potential therapeutic option for IBS. Here, we review literature concerning the role of HMOs in IBS, including data from intervention and in vitro trials. HMO supplementation shows promising results in altering the gut microbiota and improving IBS symptoms, for instance by stimulating bifidobacteria. Further research in adults is required into HMO mechanisms, to confirm the preliminary results available to date and recommendations of HMO use in IBS.

9.
Sci Rep ; 12(1): 10432, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729169

RESUMO

Broad-spectrum antimicrobial use during the treatment of critical illness influences gastrointestinal fermentation endpoints, host immune response and metabolic activity including the conversion of primary to secondary bile acids. We previously observed reduced fermentation capacity in the faecal microbiota of critically ill children upon hospital admission. Here, we further explore the timecourse of the relationship between the microbiome and bile acid profile in faecal samples collected from critically ill children. The microbiome was assayed by sequencing of the 16S rRNA gene, and faecal water bile acids were measured by liquid chromatography mass spectrometry. In comparison to admission faecal samples, members of the Lachnospiraceae recovered during the late-acute phase (days 8-10) of hospitalisation. Patients with infections had a lower proportion of Lachnospiraceae in their gut microbiota than controls and patients with primary admitting diagnoses. Keystone species linked to ecological recovery were observed to decline with the length of PICU admission. These species were further suppressed in patients with systemic infection, respiratory failure, and undergoing surgery. Bile acid composition recovers quickly after intervention for critical illness which may be aided by the compositional shift in Lachnospiraceae. Our findings suggest gut microbiota recovery can be readily assessed via measurement of faecal bile acids.


Assuntos
Microbioma Gastrointestinal , Ácidos e Sais Biliares/análise , Criança , Clostridiales/genética , Estado Terminal , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-39295778

RESUMO

Human milk oligosaccharides (HMOs) are a class of structurally diverse and complex unconjugated glycans present in breast milk, which act as selective substrates for several genera of select microbes and inhibit the colonisation of pathogenic bacteria. Yet, not all infants are breastfed, instead being fed with formula milks which may or may not contain HMOs. Currently, formula milks only possess two HMOs: 2'-fucosyllactose (2'FL) and lacto-N-neotetraose (LNnT), which have been suggested to be similarly effective as human breast milk in supporting age-related growth. However, the in vivo evidence regarding their ability to beneficially reduce respiratory infections along with altering the composition of an infant's microbiota is limited at best. Thus, this review will explore the concept of HMOs and their metabolic fate, and summarise previous in vitro and in vivo clinical data regarding HMOs, with specific regard to 2'FL and LNnT.

11.
Nutrients ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684547

RESUMO

Peruvian households have experienced one of the most prevalent economic shocks due to COVID-19, significantly increasing their vulnerability to food insecurity (FI). To understand the vulnerability characteristics of these households among the Peruvian young population, including the role of the government's response through emergency cash transfer, we analysed longitudinal data from the Young Lives study (n = 2026), a study that follows the livelihoods of two birth cohorts currently aged 18 to 27 years old. FI was assessed using the Food Insecurity Experience Scale. Household characteristics were collected before and during the COVID-19 outbreak in Peru to characterise participants' vulnerability to FI. Multivariate logistic regression was used to evaluate the association between government support and participants' vulnerability characteristics to FI. During the period under study (March to December 2020), 24% (95% CI: 22.1-25.9%) of the participants experienced FI. Families in the top wealth tercile were 49% less likely to experience FI. Larger families (>5 members) and those with increased household expenses and decreased income due to COVID-19 were more likely to experience FI (by 35%, 39% and 42%, respectively). There was no significant association between government support and FI (p = 0.768). We conclude that pre-pandemic socioeconomic status, family size, and the economic disruption during COVID-19 contribute to the risk of FI among the Peruvian young population, while government support insufficiently curtailed the risk to these households.


Assuntos
COVID-19/economia , Apoio Financeiro , Insegurança Alimentar/economia , Abastecimento de Alimentos/economia , Governo , Pandemias/economia , Adolescente , Adulto , Estudos de Coortes , Feminino , Abastecimento de Alimentos/métodos , Humanos , Renda , Estudos Longitudinais , Masculino , Peru , SARS-CoV-2 , Fatores Socioeconômicos , Adulto Jovem
12.
J Microbiol Methods ; 185: 106230, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933521

RESUMO

BACKGROUND: The role of the gut microbiota in health and disease is becoming increasingly apparent. Faeces is the most accessible sample to collect from human volunteers for studying the gut microbiota. However, the impact of stool collection and storage conditions on microbial and metabolic profiles have not been fully evaluated. By understanding the effect of different stool collection and storage conditions on microbial and metabolic composition, we can consider these parameters in the design of in vitro fermentation studies. METHODS: Stool samples from 3 volunteers were stored under 5 different conditions to mimic methods that researchers may use to collect and store stool samples for study of the gut microbiota, including: fresh sample used within 10 min; stored on wet ice (4 °C) for 60 min; stored in an anaerobic chamber in a temperature-controlled bag (4 °C) for 60 min; freezing at -20 °C for 60 min and freezing at -20 °C for 60 min and then at -80 °C for 2 weeks. The stored samples were added to basal medium in batch culture fermenters alone (negative control) or with 5 g 2'-Fucosyllactose (2'FL) Human Milk Oligosaccharide (HMO) (as a positive fermentation control). Samples were collected at 3 timepoints (0, 12 and 24 h) for analysis by Flow Cytometry-Fluorescent In Situ Hybridisation (FC-FISH) and 1H-Nuclear Magnetic Resonance (NMR) spectroscopy to assess the impact on microbial and metabolic profiles, respectively. RESULTS: Freezing stool significantly impacted microbial numbers and activity during in vitro fermentations, whereas storing the stool on wet ice (4 °C) or in an anaerobic chamber at 4 °C for 60 min had minimal effects on microbial and metabolic profiles throughout the 24 h batch culture fermentation experiments. DISCUSSION: For in vitro batch culture fermentation studies where it may not be practical or possible to use fresh stool, either storing the stool on wet ice (4 °C) or in an anaerobic chamber at 4 °C for 60 min could be plausible alternatives to maintain microbial and metabolic profiles for analysis.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Manejo de Espécimes/métodos , Adulto , Técnicas de Cultura Celular por Lotes/métodos , Feminino , Fermentação , Citometria de Fluxo/métodos , Congelamento , Humanos , Hibridização in Situ Fluorescente/métodos , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Leite Humano , Temperatura
13.
ISME J ; 14(2): 635-648, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740752

RESUMO

Diet-microbe interactions play an important role in modulating the early-life microbiota, with Bifidobacterium strains and species dominating the gut of breast-fed infants. Here, we sought to explore how infant diet drives distinct bifidobacterial community composition and dynamics within individual infant ecosystems. Genomic characterisation of 19 strains isolated from breast-fed infants revealed a diverse genomic architecture enriched in carbohydrate metabolism genes, which was distinct to each strain, but collectively formed a pangenome across infants. Presence of gene clusters implicated in digestion of human milk oligosaccharides (HMOs) varied between species, with growth studies indicating that within single infants there were differences in the ability to utilise 2'FL and LNnT HMOs between strains. Cross-feeding experiments were performed with HMO degraders and non-HMO users (using spent or 'conditioned' media and direct co-culture). Further 1H-NMR analysis identified fucose, galactose, acetate, and N-acetylglucosamine as key by-products of HMO metabolism; as demonstrated by modest growth of non-HMO users on spend media from HMO metabolism. These experiments indicate how HMO metabolism permits the sharing of resources to maximise nutrient consumption from the diet and highlights the cooperative nature of bifidobacterial strains and their role as 'foundation' species in the infant ecosystem. The intra- and inter-infant bifidobacterial community behaviour may contribute to the diversity and dominance of Bifidobacterium in early life and suggests avenues for future development of new diet and microbiota-based therapies to promote infant health.


Assuntos
Bifidobacterium , Metabolismo dos Carboidratos/genética , Leite Humano , Oligossacarídeos/genética , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/fisiologia , Aleitamento Materno , Ecossistema , Feminino , Genes Bacterianos , Variação Genética , Genoma Bacteriano , Humanos , Lactente , Metagenoma/genética , Metagenoma/fisiologia , Interações Microbianas , Microbiota , Leite Humano/química , Oligossacarídeos/metabolismo
14.
JAMA Netw Open ; 2(9): e1911970, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31539079

RESUMO

Importance: Chinese women have the highest rate of lung cancer among female never-smokers in the world, and the etiology is poorly understood. Objective: To assess the association between metabolomics and lung cancer risk among never-smoking women. Design, Setting, and Participants: This nested case-control study included 275 never-smoking female patients with lung cancer and 289 never-smoking cancer-free control participants from the prospective Shanghai Women's Health Study recruited from December 28, 1996, to May 23, 2000. Validated food frequency questionnaires were used for the collection of dietary information. Metabolomic analysis was conducted from November 13, 2015, to January 6, 2016. Data analysis was conducted from January 6, 2016, to November 29, 2018. Exposures: Untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance metabolomic profiles were characterized using prediagnosis urine samples. A total of 39 416 metabolites were measured. Main Outcomes and Measures: Incident lung cancer. Results: Among the 564 women, those who developed lung cancer (275 participants; median [interquartile range] age, 61.0 [52-65] years) and those who did not develop lung cancer (289 participants; median [interquartile range] age, 62.0 [53-66] years) at follow-up (median [interquartile range] follow-up, 10.9 [9.0-11.7] years) were similar in terms of their secondhand smoke exposure, history of respiratory diseases, and body mass index. A peak metabolite, identified as 5-methyl-2-furoic acid, was significantly associated with lower lung cancer risk (odds ratio, 0.57 [95% CI, 0.46-0.72]; P < .001; false discovery rate = 0.039). Furthermore, this peak was weakly correlated with self-reported dietary soy intake (ρ = 0.21; P < .001). Increasing tertiles of this metabolite were associated with lower lung cancer risk (in comparison with first tertile, odds ratio for second tertile, 0.52 [95% CI, 0.34-0.80]; and odds ratio for third tertile, 0.46 [95% CI, 0.30-0.70]), and the association was consistent across different histological subtypes and follow-up times. Additionally, metabolic pathway analysis found several systemic biological alterations that were associated with lung cancer risk, including 1-carbon metabolism, nucleotide metabolism, oxidative stress, and inflammation. Conclusions and Relevance: This prospective study of the untargeted urinary metabolome and lung cancer among never-smoking women in China provides support for the hypothesis that soy-based metabolites are associated with lower lung cancer risk in never-smoking women and suggests that biological processes linked to air pollution may be associated with higher lung cancer risk in this population.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Exposição Ambiental/efeitos adversos , Inflamação/etiologia , Neoplasias Pulmonares/etiologia , Metabolômica , Estresse Oxidativo/fisiologia , Proteínas de Soja/farmacologia , Estudos de Casos e Controles , China/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Fenômenos Fisiológicos da Nutrição , Razão de Chances , Estudos Prospectivos
15.
Crit Care Med ; 47(9): e727-e734, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31169619

RESUMO

OBJECTIVES: Adverse physiology and antibiotic exposure devastate the intestinal microbiome in critical illness. Time and cost implications limit the immediate clinical potential of microbial sequencing to identify or treat intestinal dysbiosis. Here, we examined whether metabolic profiling is a feasible method of monitoring intestinal dysbiosis in critically ill children. DESIGN: Prospective multicenter cohort study. SETTING: Three U.K.-based PICUs. PATIENTS: Mechanically ventilated critically ill (n = 60) and age-matched healthy children (n = 55). INTERVENTIONS: Collection of urine and fecal samples in children admitted to the PICU. A single fecal and urine sample was collected in healthy controls. MEASUREMENTS AND MAIN RESULTS: Untargeted and targeted metabolic profiling using 1H-nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry or urine and fecal samples. This was integrated with analysis of fecal bacterial 16S ribosomal RNA profiles and clinical disease severity indicators. We observed separation of global urinary and fecal metabolic profiles in critically ill compared with healthy children. Urinary excretion of mammalian-microbial co-metabolites hippurate, 4-cresol sulphate, and formate were reduced in critical illness compared with healthy children. Reduced fecal excretion of short-chain fatty acids (including butyrate, propionate, and acetate) were observed in the patient cohort, demonstrating that these metabolites also distinguished between critical illness and health. Dysregulation of intestinal bile metabolism was evidenced by increased primary and reduced secondary fecal bile acid excretion. Fecal butyrate correlated with days free of intensive care at 30 days (r = 0.38; p = 0.03), while urinary formate correlated inversely with vasopressor requirement (r = -0.2; p = 0.037). CONCLUSIONS: Disruption to the functional activity of the intestinal microbiome may result in worsening organ failure in the critically ill child. Profiling of bacterial metabolites in fecal and urine samples may support identification and treatment of intestinal dysbiosis in critical illness.


Assuntos
Estado Terminal , Disbiose/diagnóstico , Microbioma Gastrointestinal/fisiologia , Unidades de Terapia Intensiva Pediátrica/organização & administração , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida , Cresóis/urina , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Feminino , Formiatos/urina , Hipuratos/urina , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Espectrometria de Massas , Metabolômica , Estudos Prospectivos , RNA Ribossômico 16S , Respiração Artificial/estatística & dados numéricos , Índice de Gravidade de Doença , Ésteres do Ácido Sulfúrico/urina , Fatores de Tempo , Reino Unido , Urina/química , Urina/microbiologia
16.
J Proteome Res ; 16(4): 1646-1658, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28245357

RESUMO

Large-scale metabolic profiling requires the development of novel economical high-throughput analytical methods to facilitate characterization of systemic metabolic variation in population phenotypes. We report a fit-for-purpose direct infusion nanoelectrospray high-resolution mass spectrometry (DI-nESI-HRMS) method with time-of-flight detection for rapid targeted parallel analysis of over 40 urinary metabolites. The newly developed 2 min infusion method requires <10 µL of urine sample and generates high-resolution MS profiles in both positive and negative polarities, enabling further data mining and relative quantification of hundreds of metabolites. Here we present optimization of the DI-nESI-HRMS method in a detailed step-by-step guide and provide a workflow with rigorous quality assessment for large-scale studies. We demonstrate for the first time the application of the method for urinary metabolic profiling in human epidemiological investigations. Implementation of the presented DI-nESI-HRMS method enabled cost-efficient analysis of >10 000 24 h urine samples from the INTERMAP study in 12 weeks and >2200 spot urine samples from the ARIC study in <3 weeks with the required sensitivity and accuracy. We illustrate the application of the technique by characterizing the differences in metabolic phenotypes of the USA and Japanese population from the INTERMAP study.


Assuntos
Espectrometria de Massas/métodos , Metaboloma/genética , Epidemiologia Molecular/métodos , Urina/química , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Metabolômica/métodos , Nanotecnologia/métodos
17.
Emerg Top Life Sci ; 1(4): 325-332, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33525773

RESUMO

There is growing interest in the role of the gut microbiome in human health and disease. This unique complex ecosystem has been implicated in many health conditions, including intestinal disorders, inflammatory skin diseases and metabolic syndrome. However, there is still much to learn regarding its capacity to affect host health. Many gut microbiome research studies focus on compositional analysis to better understand the causal relationships between microbial communities and disease phenotypes. Yet, microbial diversity and complexity is such that community structure alone does not provide full understanding of microbial function. Metabolic phenotyping is an exciting field in systems biology that provides information on metabolic outputs taking place in the system at a given moment in time. These readouts provide information relating to by-products of endogenous metabolic pathways, exogenous signals arising from diet, drugs and other lifestyle and environmental stimuli, as well as products of microbe-host co-metabolism. Thus, better understanding of the gut microbiome and host metabolic interplay can be gleaned using such analytical approaches. In this review, we describe research findings focussed on gut microbiota-host interactions, for functional insights into the impact of microbiome composition on host health. We evaluate different analytical approaches for capturing metabolic activity and discuss analytical methodological advancements that have made a contribution to the field. This information will aid in developing novel approaches to improve host health in the future, and therapeutic modulation of the microbiome may soon augment conventional clinical strategies.

18.
BMJ Paediatr Open ; 1(1): e000192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29637175

RESUMO

OBJECTIVE: We aimed to test the hypothesis that early diet programmes the metabolic profile of young adults born preterm. DESIGN: We analysed banked urine samples obtained at a 20-year follow-up visit from adults that had participated as neonates in controlled trials involving randomisation within 48 hours of birth to feeds of preterm formula (PTF), banked breast milk (BBM) or term formula (TF) for 1 month postnatally. MAIN OUTCOME MEASURES: We performed proton nuclear magnetic resonance spectroscopy, analysing spectra by dietary group and sex. Orthogonal projections to latent structure discriminant analyses was used to model class differences and identify metabolites contributing to the differences between groups. Additionally, spectra were correlated with birth weight, gestational age and weight z score at 2 weeks of age. RESULTS: Of the original number of 926 trial participants, urine samples were available from 197 (21%) healthy young adults (42% men) born preterm (mean 30.7±2.8 weeks) and randomised to BBM (n=55; 28 men), TF (n=48; 14 men) and PTF (n=93; 40 men). We found no significant differences in urinary spectra between dietary groups including when stratified by sex. Correlation analysis revealed a weak association between metabolic profile and gestational age that was lost on controlling for ethanol excretion. CONCLUSIONS: We found no evidence that dietary exposures in the neonatal period influence the metabolic phenotype in young adult life.

19.
Metab Brain Dis ; 31(6): 1259-1267, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696270

RESUMO

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo 13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance.


Assuntos
Encefalopatia Hepática/diagnóstico , Encefalopatia Hepática/genética , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Encefalopatia Hepática/sangue , Humanos , Metabolômica/tendências , MicroRNAs/sangue , MicroRNAs/genética
20.
J Proteome Res ; 15(9): 3432-40, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27476583

RESUMO

Numerous metabolic profiling pipelines have been developed to characterize the composition of human biofluids and tissues, the vast majority of these being for studies in adults. To accommodate limited sample volume and to take into account the compositional differences between adult and infant biofluids, we developed and optimized sample handling and analytical procedures for studying urine from newborns. A robust pipeline for metabolic profiling using NMR spectroscopy was established, encompassing sample collection, preparation, spectroscopic measurement, and computational analysis. Longitudinal samples were collected from five infants from birth until 14 months of age. Methods of extraction and effects of freezing and sample dilution were assessed, and urinary contaminants from breakdown of polymers in a range of diapers and cotton wool balls were identified and compared, including propylene glycol, acrylic acid, and tert-butanol. Finally, assessment of urinary profiles obtained over the first few weeks of life revealed a dramatic change in composition, with concentrations of phenols, amino acids, and betaine altering systematically over the first few months of life. Therefore, neonatal samples require more stringent standardization of experimental design, sample handling, and analysis compared to that of adult samples to accommodate the variability and limited sample volume.


Assuntos
Metabolômica/métodos , Coleta de Urina/normas , Urina/química , Fluxo de Trabalho , Humanos , Lactente , Recém-Nascido , Espectroscopia de Ressonância Magnética , Tamanho da Amostra , Manejo de Espécimes/métodos , Manejo de Espécimes/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA