Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Med Chem ; 162: 631-649, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30476826

RESUMO

Using the available structural information of the chemokine receptor CXCR4, we present hit finding and hit exploration studies that make use of virtual fragment screening, design, synthesis and structure-activity relationship (SAR) studies. Fragment 2 was identified as virtual screening hit and used as a starting point for the exploration of 31 N-substituted piperidin-4-yl-methanamine derivatives to investigate and improve the interactions with the CXCR4 binding site. Additionally, subtle structural ligand changes lead to distinct interactions with CXCR4 resulting in a full to partial displacement of CXCL12 binding and competitive and/or non-competitive antagonism. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and binding model studies were used to identify important hydrophobic interactions that determine binding affinity and indicate key ligand-receptor interactions.


Assuntos
Metilaminas/farmacologia , Relação Quantitativa Estrutura-Atividade , Receptores CXCR4/antagonistas & inibidores , Sítios de Ligação , Quimiocina CXCL12/metabolismo , Ligantes , Metilaminas/síntese química , Modelos Moleculares , Fragmentos de Peptídeos , Piperidinas/química , Ligação Proteica
2.
Br J Pharmacol ; 170(1): 89-100, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23347159

RESUMO

BACKGROUND AND PURPOSE: The recently proposed binding mode of 2-aminopyrimidines to the human (h) histamine H4 receptor suggests that the 2-amino group of these ligands interacts with glutamic acid residue E182(5.46) in the transmembrane (TM) helix 5 of this receptor. Interestingly, substituents at the 2-position of this pyrimidine are also in close proximity to the cysteine residue C98(3.36) in TM3. We hypothesized that an ethenyl group at this position will form a covalent bond with C98(3.36) by functioning as a Michael acceptor. A covalent pyrimidine analogue will not only prove this proposed binding mode, but will also provide a valuable tool for H4 receptor research. EXPERIMENTAL APPROACH: We designed and synthesized VUF14480, and pharmacologically characterized this compound in hH4 receptor radioligand binding, G protein activation and ß-arrestin2 recruitment experiments. The ability of VUF14480 to act as a covalent binder was assessed both chemically and pharmacologically. KEY RESULTS: VUF14480 was shown to be a partial agonist of hH4 receptor-mediated G protein signalling and ß-arrestin2 recruitment. VUF14480 bound covalently to the hH4 receptor with submicromolar affinity. Serine substitution of C98(3.36) prevented this covalent interaction. CONCLUSION AND IMPLICATIONS: VUF14480 is thought to bind covalently to the hH4 receptor-C98(3.36) residue and partially induce hH4 receptor-mediated G protein activation and ß-arrestin2 recruitment. Moreover, these observations confirm our previously proposed binding mode of 2-aminopyrimidines. VUF14480 will be a useful tool to stabilize the receptor into an active confirmation and further investigate the structure of the active hH4 receptor.


Assuntos
Arrestinas/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Compostos de Vinila/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Desenho de Fármacos , Agonismo Parcial de Drogas , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/química , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas
3.
J Chromatogr A ; 1232: 19-26, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21862021

RESUMO

The analysis of cellular metabolic processes is of fundamental biological interest. Cellular metabolites, such as the intermediates of the tricarboxylic acid (TCA) cycle, provide essential information about the metabolic state of the cell. Not only is the TCA cycle a key factor in the energy regulation within aerobic cells, it possibly also plays a role in cell signaling. This paper describes a novel derivatization strategy, using the empirically selected N-methyl-2-phenylethanamine as derivatization reagent with a carbodiimide as co-reagent, for the selective derivatization of carboxylic acids, such as the di- and tri-carboxylic acids of the TCA cycle. Optimization of the derivatization protocol is described. This procedure enables analysis of the derivatives using on-line solid-phase extraction and reversed-phase liquid chromatography in combination with sensitive positive-ion electrospray ionization mass spectrometry. The complete procedure, involving the use of core-shell silica column material, allows the rapid analysis of TCA cycle intermediates in sample matrices, here shown for pig heart tissue extracts, with a good linearity over 3-4 orders of magnitude. Detection limits range from 12 to 1000 nM, depending on the analyte.


Assuntos
Ácidos Carboxílicos/análise , Cromatografia de Fase Reversa/métodos , Ciclo do Ácido Cítrico , Miocárdio/química , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Carbodi-Imidas , Isótopos de Carbono , Ácidos Carboxílicos/química , Ácidos Carboxílicos/isolamento & purificação , Cricetinae , Cinética , Limite de Detecção , Metanfetamina/análogos & derivados , Miocárdio/metabolismo , Reprodutibilidade dos Testes , Suínos , Espectrometria de Massas em Tandem , Temperatura , Extratos de Tecidos/química
4.
Br J Pharmacol ; 166(3): 898-911, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21883151

RESUMO

BACKGROUND AND PURPOSE: The chemokine receptor CXCR3 is a GPCR found predominantly on activated T cells. CXCR3 is activated by three endogenous peptides; CXCL9, CXCL10 and CXCL11. Recently, a small-molecule agonist, VUF10661, has been reported in the literature and synthesized in our laboratory. The aim of the present study was to provide a detailed pharmacological characterization of VUF10661 by comparing its effects with those of CXCL11. EXPERIMENTAL APPROACH: Agonistic properties of VUF10661 were assessed in a chemotaxis assay with murine L1.2 cells transiently transfected with cDNA encoding the human CXCR3 receptor and in binding studies, with [(125)I]-CXCL10 and [(125)I]-CXCL11, on membrane preparations from HEK293 cells stably expressing CXCR3. [(35)S]-GTPγS binding was used to determine its potency to induce CXCR3-mediated G protein activation and BRET-based assays to investigate its effects on intracellular cAMP levels and ß-arrestin recruitment. KEY RESULTS: VUF10661 acted as a partial agonist in CXCR3-mediated chemotaxis, bound to CXCR3 in an allosteric fashion in ligand binding assays and activated G(i) proteins with the same efficacy as CXCL11 in the [(35)S]-GTPγS binding and cAMP assay, while it recruited more ß-arrestin1 and ß-arrestin2 to CXCR3 receptors than the chemokine. CONCLUSIONS AND IMPLICATIONS: VUF10661, like CXCL11, activates both G protein-dependent and -independent signalling via the CXCR3 receptor, but probably exerts its effects from an allosteric binding site that is different from that for CXCL11. It could stabilize different receptor and/or ß-arrestin conformations leading to differences in functional output. Such ligand-biased signalling might offer interesting options for the therapeutic use of CXCR3 agonists.


Assuntos
Isoquinolinas/farmacologia , Receptores CXCR3/agonistas , Bibliotecas de Moléculas Pequenas/farmacologia , Regulação Alostérica , Animais , Técnicas de Cultura de Células , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiotaxia/efeitos dos fármacos , AMP Cíclico/metabolismo , DNA Complementar/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Isoquinolinas/química , Ligantes , Camundongos , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Ensaio Radioligante , Receptores CXCR3/antagonistas & inibidores , Receptores CXCR3/genética , Receptores de Superfície Celular/biossíntese , Bibliotecas de Moléculas Pequenas/química , Transfecção
5.
Br J Pharmacol ; 165(6): 1617-1643, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21699506

RESUMO

G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.


Assuntos
Receptores de Quimiocinas/metabolismo , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Quimiocinas/metabolismo , Desenho de Fármacos , Humanos , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/antagonistas & inibidores
6.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(17-18): 1393-401, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21176889

RESUMO

In order to develop a generic positive ionization ESI LC-MS method for a variety of interesting substance classes, a new derivatization strategy for carboxylic acids was developed. The carboxylic acid group is labeled with the bromine containing 4-APEBA reagent based on carbodiimide chemistry. The derivatization reaction can be carried out under aqueous conditions, thereby greatly simplifying sample preparation. In this paper, the derivatization of carboxylic acids is exemplified for the determination of prostanoids and non-steroidal anti-inflammatory drugs (NSAID). Optimization of the derivatization conditions was studied. In order to prove the applicability of the presented approach, we applied the described protocol to urine samples from complex regional pain syndrome (CRPS) patients and were able to detect several prostanoids not visible in the urine of healthy volunteers. Further, the determination of the non-steroidal anti-inflammatory drug ibuprofen in a urine sample was possible.


Assuntos
Compostos de Anilina/química , Anti-Inflamatórios não Esteroides/urina , Ácidos Carboxílicos/química , Síndromes da Dor Regional Complexa/urina , Ibuprofeno/urina , Prostaglandinas/urina , Compostos de Amônio Quaternário/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA