Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Psychiatry ; 26(7): 3004-3017, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33057169

RESUMO

Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10-6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10-13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10-43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10-22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10-12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10-4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10-7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10-29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.


Assuntos
Dislexia , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dislexia/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
J Proteomics ; 228: 103889, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32652221

RESUMO

Ancient protein analysis is providing new insights into the evolutionary relationships between hominin fossils across the Pleistocene. Protein identification commonly relies on the proteolysis of a protein extract using a single protease, trypsin. As with modern proteome studies, alternative or additional proteases have the potential to increase both proteome size and protein sequence recovery. This could enhance the recovery of phylogenetic information from ancient proteomes. Here we identify 18 novel hominin bone specimens from the Kleine Feldhofer Grotte using MALDI-TOF MS peptide mass fingerprinting of collagen type I. Next, we use one of these hominin bone specimens and three Late Pleistocene Equidae specimens identified in a similar manner and present a comparison of the bone proteome size and protein sequence recovery obtained after using nanoLC-MS/MS and parallel proteolysis using six different proteases, including trypsin. We observe that the majority of the preserved bone proteome is inaccessible to trypsin. We also observe that for proteins recovered consistently across several proteases, protein sequence coverage can be increased significantly by combining peptide identifications from two or more proteases. Our results thereby demonstrate that the proteolysis of Pleistocene proteomes by several proteases has clear advantages when addressing evolutionary questions in palaeoproteomics. SIGNIFICANCE: Maximizing proteome and protein sequence recovery of ancient skeletal proteomes is important when analyzing unique hominin fossils. As with modern proteome studies, palaeoproteomic analysis of Pleistocene bone and dentine samples has almost exclusively used trypsin as its only protease, despite the demonstrated advantages of alternative proteases to increase proteome recovery in modern proteome studies. We demonstrate that Pleistocene bone proteomes can be significantly expanded by using additional proteases beside trypsin, and that this also improves sequence coverage of individual proteins. The use of several alternative proteases beside trypsin therefore has major benefits to maximize the phylogenetic information retrieved from ancient skeletal proteomes.


Assuntos
Proteoma , Proteômica , Peptídeo Hidrolases , Filogenia , Espectrometria de Massas em Tandem
3.
Nature ; 581(7808): 299-302, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433609

RESUMO

The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4-6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8.


Assuntos
Fósseis , Migração Humana/história , Animais , Ásia , Osso e Ossos/metabolismo , Bulgária , Cavernas , DNA Antigo/isolamento & purificação , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Europa (Continente) , História Antiga , Humanos , Homem de Neandertal/genética , Filogenia , Comportamento de Utilização de Ferramentas , Dente/anatomia & histologia , Dente/metabolismo
4.
Sci Rep ; 10(1): 7746, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385291

RESUMO

Five nearly identical fragments of specialized bone tools, interpreted as lissoirs (French for "smoothers"), have been found at two Middle Paleolithic sites in southwest France. The finds span three separate archaeological deposits, suggesting continuity in the behavior of late Neandertals. Using standard morphological assessments, we determined that the lissoirs were produced on ribs of medium-sized ungulates. However, since these bones are highly fragmented and anthropogenically modified, species determinations were challenging. Also, conservative curation policy recommends minimizing destructive sampling of rare, fragile, or small artifacts for molecular identification methods. To better understand raw material selection for these five lissoirs, we reassess their taxonomy using a non-destructive ZooMS methodology based on triboelectric capture of collagen. We sampled four storage containers and obtained identifiable MALDI-TOF MS collagen fingerprints, all indicative of the same taxonomic clade, which includes aurochs and bison (Bos sp. and Bison sp.). The fifth specimen, which was stored in a plastic bag, provided no useful MALDI-TOF MS spectra. We show that the choice of large bovid ribs in an archaeological layer dominated by reindeer (Rangifer tarandus) demonstrates strategic selection by these Neandertals. Furthermore, our results highlight the value of a promising technique for the non-destructive analysis of bone artifacts.


Assuntos
Osso e Ossos , Homem de Neandertal , Comportamento de Utilização de Ferramentas , Animais , Arqueologia
5.
Neuroimage ; 211: 116633, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061802

RESUMO

Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Conectoma , Dislexia/fisiopatologia , Idioma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Percepção da Fala/fisiologia , Criança , Pré-Escolar , Suscetibilidade a Doenças/diagnóstico por imagem , Suscetibilidade a Doenças/fisiopatologia , Dislexia/diagnóstico por imagem , Feminino , Humanos , Individualidade , Alfabetização , Estudos Longitudinais , Masculino , Rede Nervosa/diagnóstico por imagem
6.
Sci Rep ; 9(1): 12350, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451791

RESUMO

Collagen type I fingerprinting (ZooMS) has recently been used to provide either palaeoenvironmental data or to identify additional hominin specimens in Pleistocene contexts, where faunal assemblages are normally highly fragmented. However, its potential to elucidate hominin subsistence behaviour has been unexplored. Here, ZooMS and zooarchaeology have been employed in a complementary approach to investigate bone assemblages from Final Mousterian and Uluzzian contexts at Fumane cave (Italy). Both approaches produced analogous species composition, but differ significantly in species abundance, particularly highlighted by a six fold-increase in the quantity of Bos/Bison remains in the molecularly identified component. Traditional zooarchaeological methods would therefore underestimate the proportion of Bos/Bison in these levels to a considerable extent. We suggest that this difference is potentially due to percussion-based carcass fragmentation of large Bos/Bison bone diaphyses. Finally, our data demonstrates high variability in species assignment to body size classes based on bone cortical thickness and fragment size. Thus, combining biomolecular and traditional zooarchaeological methods allows us to refine our understanding of bone assemblage composition associated with hominin occupation at Fumane.


Assuntos
Arqueologia , Hominidae/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Osso e Ossos/anatomia & histologia , Fósseis , Geografia , Itália
7.
Transl Psychiatry ; 9(1): 77, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741946

RESUMO

Developmental dyslexia (DD) is one of the most prevalent learning disorders, with high impact on school and psychosocial development and high comorbidity with conditions like attention-deficit hyperactivity disorder (ADHD), depression, and anxiety. DD is characterized by deficits in different cognitive skills, including word reading, spelling, rapid naming, and phonology. To investigate the genetic basis of DD, we conducted a genome-wide association study (GWAS) of these skills within one of the largest studies available, including nine cohorts of reading-impaired and typically developing children of European ancestry (N = 2562-3468). We observed a genome-wide significant effect (p < 1 × 10-8) on rapid automatized naming of letters (RANlet) for variants on 18q12.2, within MIR924HG (micro-RNA 924 host gene; rs17663182 p = 4.73 × 10-9), and a suggestive association on 8q12.3 within NKAIN3 (encoding a cation transporter; rs16928927, p = 2.25 × 10-8). rs17663182 (18q12.2) also showed genome-wide significant multivariate associations with RAN measures (p = 1.15 × 10-8) and with all the cognitive traits tested (p = 3.07 × 10-8), suggesting (relational) pleiotropic effects of this variant. A polygenic risk score (PRS) analysis revealed significant genetic overlaps of some of the DD-related traits with educational attainment (EDUyears) and ADHD. Reading and spelling abilities were positively associated with EDUyears (p ~ [10-5-10-7]) and negatively associated with ADHD PRS (p ~ [10-8-10-17]). This corroborates a long-standing hypothesis on the partly shared genetic etiology of DD and ADHD, at the genome-wide level. Our findings suggest new candidate DD susceptibility genes and provide new insights into the genetics of dyslexia and its comorbities.


Assuntos
Cognição , Dislexia/genética , Dislexia/psicologia , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
Genet. mol. biol ; 41(1): 41-49, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892475

RESUMO

Abstract An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

9.
Genet Mol Biol ; 41(1): 41-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473935

RESUMO

An increasing number of genetic variants involved in dyslexia development were discovered during the last years, yet little is known about the molecular functional mechanisms of these SNPs. In this study we investigated whether dyslexia candidate SNPs have a direct, disease-specific effect on local expression levels of the assumed target gene by using a differential allelic expression assay. In total, 12 SNPs previously associated with dyslexia and related phenotypes were suitable for analysis. Transcripts corresponding to four SNPs were sufficiently expressed in 28 cell lines originating from controls and a family affected by dyslexia. We observed a significant effect of rs600753 on expression levels of DYX1C1 in forward and reverse sequencing approaches. The expression level of the rs600753 risk allele was increased in the respective seven cell lines from members of the dyslexia family which might be due to a disturbed transcription factor binding sites. When considering our results in the context of neuroanatomical dyslexia-specific findings, we speculate that this mechanism may be part of the pathomechanisms underlying the dyslexia-specific brain phenotype. Our results suggest that allele-specific DYX1C1 expression levels depend on genetic variants of rs600753 and contribute to dyslexia. However, these results are preliminary and need replication.

10.
Brain Behav ; 7(11): e00851, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29201552

RESUMO

Background: Dyslexia is a specific learning disorder affecting reading and spelling abilities. Its prevalence is ~5% in German-speaking individuals. Although the etiology of dyslexia largely remains to be determined, comprehensive evidence supports deficient phonological processing as a major contributing factor. An important prerequisite for phonological processing is auditory discrimination and, thus, essential for acquiring reading and spelling skills. The event-related potential Mismatch Response (MMR) is an indicator for auditory discrimination capabilities with dyslexics showing an altered late component of MMR in response to auditory input. Methods: In this study, we comprehensively analyzed associations of dyslexia-specific late MMRs with genetic variants previously reported to be associated with dyslexia-related phenotypes in multiple studies comprising 25 independent single-nucleotide polymorphisms (SNPs) within 10 genes. Results: First, we demonstrated validity of these SNPs for dyslexia in our sample by showing that additional inclusion of a polygenic risk score improved prediction of impaired writing compared with a model that used MMR alone. Secondly, a multifactorial regression analysis was conducted to uncover the subset of the 25 SNPs that is associated with the dyslexia-specific late component of MMR. In total, four independent SNPs within DYX1C1 and ATP2C2 were found to be associated with MMR stronger than expected from multiple testing. To explore potential pathomechanisms, we annotated these variants with functional data including tissue-specific expression analysis and eQTLs. Conclusion: Our findings corroborate the late component of MMR as a potential endophenotype for dyslexia and support tripartite relationships between dyslexia-related SNPs, the late component of MMR and dyslexia.


Assuntos
Afasia/genética , ATPases Transportadoras de Cálcio/genética , Dislexia/genética , Potenciais Evocados Auditivos/genética , Predisposição Genética para Doença/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fonética , Criança , Proteínas do Citoesqueleto , Endofenótipos , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estatística como Assunto
11.
Dev Cogn Neurosci ; 24: 63-71, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28182973

RESUMO

Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.


Assuntos
Dislexia/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Psicometria/métodos , Percepção da Fala/genética , Criança , Pré-Escolar , Dislexia/fisiopatologia , Feminino , Humanos , Masculino , Risco
12.
Neuroimage ; 143: 378-386, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27608602

RESUMO

BACKGROUND: Recent studies suggest that neurobiological anomalies are already detectable in pre-school children with a family history of developmental dyslexia (DD). However, there is a lack of longitudinal studies showing a direct link between those differences at a preliterate age and the subsequent literacy difficulties seen in school. It is also not clear whether the prediction of DD in pre-school children can be significantly improved when considering neurobiological predictors, compared to models based on behavioral literacy precursors only. METHODS: We recruited 53 pre-reading children either with (N=25) or without a family risk of DD (N=28). Quantitative T1 MNI data and literacy precursor abilities were assessed at kindergarten age. A subsample of 35 children was tested for literacy skills either one or two years later, that is, either in first or second grade. RESULTS: The group comparison of quantitative T1 measures revealed significantly higher T1 intensities in the left anterior arcuate fascicle (AF), suggesting reduced myelin concentration in preliterate children at risk of DD. A logistic regression showed that DD can be predicted significantly better (p=.024) when neuroanatomical differences between groups are used as predictors (80%) compared to a model based on behavioral predictors only (63%). The Wald statistic confirmed that the T1 intensity of the left AF is a statistically significant predictor of DD (p<.05). CONCLUSIONS: Our longitudinal results provide evidence for the hypothesis that neuroanatomical anomalies in children with a family risk of DD are related to subsequent problems in acquiring literacy. Particularly, solid white matter organization in the left anterior arcuate fascicle seems to play a pivotal role.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Dislexia/diagnóstico , Substância Cinzenta/diagnóstico por imagem , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem , Criança , Pré-Escolar , Dislexia/diagnóstico por imagem , Dislexia/fisiopatologia , Diagnóstico Precoce , Imagem Ecoplanar/métodos , Feminino , Seguimentos , Humanos , Masculino , Prognóstico
13.
Sci Rep ; 6: 27901, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312598

RESUMO

Dyslexia is a severe disorder in the acquisition of reading and writing. Several studies investigated the role of genetics for reading, writing and spelling ability in the general population. However, many of the identified SNPs were not analysed in case-control cohorts. Here, we investigated SNPs previously linked to reading or spelling ability in the general population in a German case-control cohort. Furthermore, we characterised these SNPs for functional relevance with in silico methods and meta-analysed them with previous studies. A total of 16 SNPs within five genes were included. The total number of risk alleles was higher in cases than in controls. Three SNPs were nominally associated with dyslexia: rs7765678 within DCDC2, and rs2038137 and rs6935076 within KIAA0319. The relevance of rs2038137 and rs6935076 was further supported by the meta-analysis. Functional profiling included analysis of tissue-specific expression, annotations for regulatory elements and effects on gene expression levels (eQTLs). Thereby, we found molecular mechanistical implications for 13 of all 16 included SNPs. SNPs associated in our cohort showed stronger gene-specific eQTL effects than non-associated SNPs. In summary, our results validate SNPs previously linked to reading and spelling in the general population in dyslexics and provide insights into their putative molecular pathomechanisms.


Assuntos
Dislexia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Alemanha , Humanos , Masculino , Locos de Características Quantitativas , Leitura
14.
Brain ; 139(Pt 10): 2792-2803, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27343255

RESUMO

Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the 'visual word form area' achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.

15.
Hum Genet ; 135(3): 259-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26839113

RESUMO

Reliable risk assessment of frequent, but treatable diseases and disorders has considerable clinical and socio-economic relevance. However, as these conditions usually originate from a complex interplay between genetic and environmental factors, precise prediction remains a considerable challenge. The current progress in genotyping technology has resulted in a substantial increase of knowledge regarding the genetic basis of such diseases and disorders. Consequently, common genetic risk variants are increasingly being included in epidemiological models to improve risk prediction. This work reviews recent high-quality publications targeting the prediction of common complex diseases. To be included in this review, articles had to report both, numerical measures of prediction performance based on traditional (non-genetic) risk factors, as well as measures of prediction performance when adding common genetic variants to the model. Systematic PubMed-based search finally identified 55 eligible studies. These studies were compared with respect to the chosen approach and methodology as well as results and clinical impact. Phenotypes analysed included tumours, diabetes mellitus, and cardiovascular diseases. All studies applied one or more statistical measures reporting on calibration, discrimination, or reclassification to quantify the benefit of including SNPs, but differed substantially regarding the methodological details that were reported. Several examples for improved risk assessments by considering disease-related SNPs were identified. Although the add-on benefit of including SNP genotyping data was mostly moderate, the strategy can be of clinical relevance and may, when being paralleled by an even deeper understanding of disease-related genetics, further explain the development of enhanced predictive and diagnostic strategies for complex diseases.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus/genética , Marcadores Genéticos , Neoplasias/genética , Doenças Cardiovasculares/diagnóstico , Diabetes Mellitus/diagnóstico , Técnicas de Genotipagem , Humanos , Neoplasias/diagnóstico , Polimorfismo de Nucleotídeo Único , Medição de Risco
16.
Eur J Hum Genet ; 24(2): 178-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26036858

RESUMO

Dyslexia is a developmental disorder characterized by severe problems in the acquisition of reading and writing skills. It has a strong neurobiological basis. Genetic influence is estimated at 50-70%. One of the central problems with dyslexia is its late diagnosis, normally not before the end of the 2nd grade, resulting in the loss of several years for early therapy. Currently, research is focusing on the development of early tests for dyslexia, which may be based on EEG and genetics. Our aim was to determine the acceptance of such a future test among parents. We conducted a representative survey in Germany with 1000 parents of children aged 3-7 years, with and without experience of dyslexia. 88.7% of the parents supported the introduction of an early test for dyslexia based on EEG and genetics; 82.8% would have their own children tested, and 57.9% were willing to pay for the test if health insurance did not cover the costs. Test acceptance was significantly higher if parents had prior experience with dyslexia. The perceived benefits of such a test were early recognition and remediation and, preventing deficits. Concerns regarded the precision of the test, its potentially stigmatizing effect and its costs. The high overall support for the test leads to the conclusion that parents would accept a test for dyslexia based on EEG and genetics.


Assuntos
Dislexia/diagnóstico , Testes Genéticos , Criança , Pré-Escolar , Dislexia/epidemiologia , Dislexia/genética , Eletroencefalografia , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pais , Fonética , Leitura
17.
Cortex ; 71: 291-305, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283516

RESUMO

Developmental dyslexia, a severe impairment of literacy acquisition, is known to have a neurological basis and a strong genetic background. However, effects of individual genetic variations on dyslexia-associated deficits are only moderate and call for the assessment of the genotype's impact on mediating neuro-endophenotypes by the imaging genetics approach. Using voxel-based morphometry (VBM) in German participants with and without dyslexia, we investigated gray matter changes and their association with impaired phonological processing, such as reduced verbal working memory. These endophenotypical alterations were, together with dyslexia-associated genetic variations, examined on their suitability as potential predictors of dyslexia. We identified two gray matter clusters in the left posterior temporal cortex related to verbal working memory capacity. Regional cluster differences correlated with genetic risk variants in TNFRSF1B. High-genetic-risk participants exhibit a structural predominance of auditory-association areas relative to auditory-sensory areas, which may partly compensate for deficient early auditory-sensory processing stages of verbal working memory. The reverse regional predominance observed in low-genetic-risk participants may in turn reflect reliance on these early auditory-sensory processing stages. Logistic regression analysis further supported that regional gray matter differences and genetic risk interact in the prediction of individuals' diagnostic status: With increasing genetic risk, the working-memory related structural predominance of auditory-association areas relative to auditory-sensory areas classifies participants with dyslexia versus control participants. Focusing on phonological deficits in dyslexia, our findings suggest endophenotypical changes in the left posterior temporal cortex could comprise novel pathomechanisms for verbal working memory-related processes translating TNFRSF1B genotype into the dyslexia phenotype.


Assuntos
Dislexia/genética , Dislexia/psicologia , Memória de Curto Prazo , Adulto , Percepção Auditiva/fisiologia , Compreensão , Dislexia/patologia , Endofenótipos , Feminino , Predisposição Genética para Doença/genética , Substância Cinzenta/patologia , Humanos , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/genética , Transtornos da Memória/psicologia , Fenótipo , Leitura , Receptores Tipo II do Fator de Necrose Tumoral/genética , Risco , Sensação/fisiologia , Lobo Temporal/patologia
18.
Neuroimage ; 118: 414-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26080313

RESUMO

Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia.


Assuntos
Conscientização/fisiologia , Dislexia/genética , Dislexia/fisiopatologia , Lobo Frontal/fisiopatologia , Lobo Temporal/fisiopatologia , Mapeamento Encefálico , Criança , Imagem de Tensor de Difusão , Dislexia/patologia , Feminino , Lobo Frontal/patologia , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Fonética , Polimorfismo de Nucleotídeo Único , Psicometria , Leitura , Lobo Temporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA