Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cytometry A ; 85(12): 999-1010, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25274073

RESUMO

Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells.


Assuntos
Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Animais , Células CHO , Cricetulus , Citometria de Fluxo/instrumentação
4.
Cytometry A ; 75(12): 979-89, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19852060

RESUMO

Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.


Assuntos
Citometria de Fluxo/economia , Citometria de Fluxo/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Citometria de Fluxo/instrumentação , Fluorescência , Microesferas
5.
Cytometry A ; 71(11): 915-24, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17680705

RESUMO

A digital signal processing (DSP)-based digital data acquisition system has been developed to support novel flow cytometry efforts. The system flexibility includes how it detects, captures, and processes event data. Custom data capture boards utilizing analog to digital converters (ADCs) and field programmable gate arrays (FPGA) detect events and capture correlated event data. A commercial DSP board processes the captured data and sends the results over the IEEE 1394 bus to the host computer that provides a user interface for acquisition, display, analysis, and storage. The system collects list mode data, correlated pulse shapes, or streaming data from a variety of detector types using Linux, Mac OS X, and Windows host computers. It extracts pulse features not found on commercial systems with excellent sensitivity and linearity over a wide dynamic range. List mode data are saved in FCS 3.0 formatted files while streaming or correlated waveform data are saved in custom format files for postprocessing. Open, reconfigurable cytometric acquisition system is compact, scaleable, flexible, and modular. Programmable feature extraction algorithms have exciting possibilities for both new and existing applications. The recent availability of a commercial data capture board will enable general availability of similar systems.


Assuntos
Citometria de Fluxo , Processamento de Imagem Assistida por Computador , DNA/química , DNA/metabolismo , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA