Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Pathol ; 193(12): 2133-2143, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37544503

RESUMO

Although approximately 70% of bladder cancers are noninvasive and have high recurrence rates, early-stage disease is understudied. The lack of models to validate the contribution of molecular drivers of bladder tumorigenesis is a significant issue. Although mutations in PIK3CA are frequent in human bladder cancer, an in vivo model for understanding their contribution to bladder tumorigenesis is unavailable. Therefore, a Upk2-Cre/Pik3caH1047R mouse model expressing one or two R26-Pik3caH1047R alleles in a urothelium-specific manner was generated. Pik3caH1047R functionality was confirmed by quantifying Akt phosphorylation, and mice were characterized by assessing urothelial thickness, nuclear atypia, and expression of luminal and basal markers at 6 and 12 months of age. While at 6 months, Pik3caH1047R mice developed increased urothelial thickness and nuclear atypia, progressive disease was not observed at 12 months. Immunohistochemistry showed urothelium maintained luminal differentiation characterized by high forkhead box A1 (Foxa1) and peroxisome proliferator-activated receptor γ expression. Surprisingly, Pik3caH1047R mice subjected to low-dose carcinogen exposure [N-butyl-N-(4-hydroxybutyl)nitrosamine] exhibited no significant differences after exposure relative to mice without exposure. Furthermore, single-sample gene set enrichment analysis of invasive human tumors showed those with mutant PIK3CA did not exhibit significantly increased phosphatidylinositol 3-kinase/AKT pathway activity compared with wild-type PIK3CA tumors. Overall, these data suggest that Pik3caH1047R can elicit early tumorigenic changes in the urothelium, but progression to invasion may require additional genetic alterations.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo
2.
Oncogene ; 39(6): 1302-1317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31636388

RESUMO

Intratumoral heterogeneity in bladder cancer is a barrier to accurate molecular sub-classification and treatment efficacy. However, individual cellular and mechanistic contributions to tumor heterogeneity are controversial. We examined potential mechanisms of FOXA1 and PTEN inactivation in bladder cancer and their contribution to tumor heterogeneity. These analyses were complemented with inactivation of FOXA1 and PTEN in intermediate and luminal mouse urothelium. We show inactivation and reduced expression of FOXA1 and PTEN is prevalent in human disease, where PTEN and FOXA1 are downregulated by allelic loss and site-specific DNA hypermethylation, respectively. Conditional inactivation of both Foxa1 and Pten in intermediate/luminal cells in mice results in development of bladder cancer exhibiting squamous features as well as enhanced sensitivity to a bladder-specific carcinogen. In addition, FOXA1 is hypermethylated in basal bladder cancer cell lines, and this is reversed by treatment with DNA methyltransferase inhibitors. By integrating human correlative and in vivo studies, we define a critical role for PTEN loss and epigenetic silencing of FOXA1 in heterogeneous human disease and show genetic targeting of luminal/intermediate cells in mice drives squamous differentiation.


Assuntos
Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Metilação de DNA , Fator 3-alfa Nuclear de Hepatócito/genética , Perda de Heterozigosidade , PTEN Fosfo-Hidrolase/genética , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Musculares/genética , Neoplasias Musculares/metabolismo , Neoplasias Musculares/patologia , PTEN Fosfo-Hidrolase/metabolismo , Prognóstico , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
3.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137849

RESUMO

Epigenetic aberrations are prominent in bladder cancer (BC) and contribute to disease pathogenesis. We characterized histone deacetylase (HDAC) expression, a family of deacetylation enzymes, in both in vitro and in vivo BC model systems and analyzed expression data from The Cancer Genome Atlas (TCGA). Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis was used to determine the expression status of Class I and II HDACs in ten human BC cell lines, while qRT-PCR was used to determine HDAC expression in 24 human tumor specimens. The TCGA cohort consists of 408 muscle invasive BC (MIBC) clinical samples and analysis of this data set identified expression of HDAC4 and -9 as being associated with basal-squamous disease. These findings agree with qRT-PCR results identifying increased expression of HDAC4, -7, and -9 in basal BC cell lines (p < 0.05; Kruskal-Wallis test) and in clinical specimens with invasive bladder cancer (not statistically significant). We also observed increased expression in Hdac4, -7, and -9 in commonly used BC mouse models. Here, we identify suitable preclinical model systems for the study of HDACs, and show increased expression of Class IIa HDACs, specifically HDAC4 and HDAC9, in basal BC cell lines and in invasive clinical specimens. These results suggest this class of HDACs may be best suited for targeted inhibition in patients with basal BC.


Assuntos
Histona Desacetilases/genética , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Camundongos , Bexiga Urinária/embriologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA