Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(4): e0293680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652715

RESUMO

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Assuntos
Biomarcadores , Células Epiteliais , Lipopolissacarídeos , Pseudomonas aeruginosa , Humanos , Lipopolissacarídeos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Pseudomonas aeruginosa/imunologia , Biomarcadores/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Transcriptoma , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Quimiocinas/metabolismo , Quimiocinas/genética
2.
J Chem Inf Model ; 60(10): 5117-5125, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32966074

RESUMO

Functionalization is often needed to harness the power of proteins for beneficial use but can cause losses to stability and/or activity. State of the art methods to limit these deleterious effects accomplish this by substituting an amino acid in the wild-type molecule into an unnatural amino acid, such as p-azidophenylalanine (pAz), but selecting the residue for substitution a priori remains an elusive goal of protein engineering. The results of this work indicate that all-atom molecular dynamics simulation can be used to determine whether substituting pAz for a natural amino acid will be detrimental to experimentally determined protein stability. These results offer significant hope that local deviations from wild-type structure caused by pAz incorporation observed in simulations can be a predictive metric used to reduce the number of costly experiments that must be done to find active proteins upon substitution with pAz and subsequent functionalization.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Azidas , Fenilalanina/análogos & derivados , Estabilidade Proteica
3.
Biotechnol J ; 15(4): e1900294, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31904183

RESUMO

Acute lymphocytic leukemia (ALL) is a common childhood cancer in the United States, with over 6000 new cases diagnosed each year. Administration of bacterial asparaginase (ASNase) has improved survival rates to nearly 80%, however these therapeutics have high incidence of immunological neutralization and serum activity must be monitored for most effective treatment regimens. Here, a 72% improvement in cell-free protein synthesis (CFPS) of FDA approved l-asparaginase (crisantaspase) is demonstrated by employing an aspartate-fed-batch reactor format. A CFPS-based ASNase activity assay as a tool for therapeutic regimentation and production quality control is also presented. This work suggests that shelf-stable and low-cost Escherichia coli-based CFPS reactions may be employed on-demand to 1) synthesize biologics on-site for patient administration, 2) verify biologic activity for dosage calculations, and 3) monitor therapeutic activity in human serum during the treatment regimen. The combination of both therapeutic production and activity assessment introduces a concept of synergistic utility for bacterial cell lysates in modern medical treatment. Indeed, recent work with CFPS biosensors supports a not-too-distant future when shelf-stable E. coli CFPS systems are used to diagnose, treat, and monitor treatment of diseases in the clinical setting.


Assuntos
Asparaginase/biossíntese , Asparaginase/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , Soro/enzimologia , Antineoplásicos/uso terapêutico , Bactérias/enzimologia , Técnicas de Cultura Celular por Lotes/métodos , Engenharia Celular , Escherichia coli/metabolismo , Humanos
4.
N Biotechnol ; 53: 73-80, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349031

RESUMO

Cell-free protein synthesis has emerged as a promising platform for the production of therapeutic proteins due to its inherently open reaction environment, flexible reaction conditions and rapid protein synthesis capabilities. In recent years, lyophilized cell-free systems have widened the application space of cell-free technology by improving reagent stability outside of cold-chain storage. Current embodiments of the system, however, demonstrate poor stability at elevated temperatures. Lyoprotectants have long been recognized for the ability to preserve the activity of biological molecules during drying processes, but the application of this technology to lyophilized cell-free systems has been limited and has failed to address the negative effects that such lyoprotectants may have on cell-free systems. Here, several lyoprotected, lyophilized cell-free protein synthesis systems are demonstrated using antiplasticized sugar glasses as lyoprotectants, showing significant improvement over standard lyophilized systems or trehalose-preserved systems. Furthermore, we demonstrate for the first time, preservation and therapeutic expression, specifically of FDA-approved crisantaspase, from a truly single-pot lyophilized, endotoxin-free, cell-free protein synthesis system, exemplifying the potential for on-site therapeutic synthesis.


Assuntos
Asparaginase/biossíntese , Temperatura , Asparaginase/isolamento & purificação , Asparaginase/metabolismo , Liofilização
5.
J Biol Eng ; 13: 43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139251

RESUMO

Metabolic labeling of proteins with non-canonical amino acids (ncAAs) provides unique bioorthogonal chemical groups during de novo synthesis by taking advantage of both endogenous and heterologous protein synthesis machineries. Labeled proteins can then be selectively conjugated to fluorophores, affinity reagents, peptides, polymers, nanoparticles or surfaces for a wide variety of downstream applications in proteomics and biotechnology. In this review, we focus on techniques in which proteins are residue- and site-specifically labeled with ncAAs containing bioorthogonal handles. These ncAA-labeled proteins are: readily enriched from cells and tissues for identification via mass spectrometry-based proteomic analysis; selectively purified for downstream biotechnology applications; or labeled with fluorophores for in situ analysis. To facilitate the wider use of these techniques, we provide decision trees to help guide the design of future experiments. It is expected that the use of ncAA labeling will continue to expand into new application areas where spatial and temporal analysis of proteome dynamics and engineering new chemistries and new function into proteins are desired.

6.
Biotechnol J ; 14(3): e1800271, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30024107

RESUMO

Approximately one third of protein therapeutics are produced in Escherichia coli, targeting a wide variety of diseases. However, due to immune recognition of endotoxin (a lipid component in the E. coli cell membrane), these protein products must be extensively purified before application to avoid adverse reactions such as septic shock. E. coli-based cell-free protein synthesis (CFPS), which has emerged as a promising platform for the development and production of enhanced protein therapeutics, provides a unique opportunity to remove endotoxins prior to protein expression due to its open environment and the absence of live cells. Pre-expression endotoxin removal from CFPS reagents could simplify downstream processing, potentially enabling on-demand production of unique protein therapeutics. Herein, three strategies for removing endotoxins from E. coli cell lysate are evaluated: Triton X-114 two-phase extraction, polylysine affinity chromatography, and extract preparation from genetically engineered, endotoxin-free ClearColi cells. It is demonstrated that current protocols for endotoxin removal treatments insufficiently reduce endotoxin and significantly reduce protein synthesis yields. Further, the first adaptation of ClearColi cells to prepare cell-free extract with high protein synthesis capability is demonstrated. Finally, production of the acute lymphoblastic leukemia therapeutic crisantaspase from reduced-endotoxin extract and endotoxin-free ClearColi extract is demonstrated.


Assuntos
Endotoxinas/genética , Biossíntese de Proteínas/genética , Proteínas/genética , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Humanos , Neoplasias/tratamento farmacológico
7.
Curr Opin Biotechnol ; 53: 115-121, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29310029

RESUMO

Biomanufacturing has emerged as a promising alternative to chemocatalysis for green, renewable, complex synthesis of biofuels, medicines, and fine chemicals. Cell-free chemical biosynthesis offers additional advantages over in vivo production, enabling plug-and-play assembly of separately produced enzymes into an optimal cascade, versatile reaction conditions, and direct access to the reaction environment. In order for these advantages to be realized on the larger scale of industry, strategies are needed to reduce costs of biocatalyst generation, improve biocatalyst stability, and enable economically sustainable continuous cascade operation. Here we overview the advantages and remaining challenges of applying cell-free chemical biosynthesis for commodity production, and discuss recent advances in cascade engineering, enzyme immobilization, and enzyme encapsulation which constitute important steps towards addressing these challenges.


Assuntos
Engenharia Metabólica/métodos , Sistema Livre de Células , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo
8.
ACS Synth Biol ; 7(2): 510-521, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295615

RESUMO

Although polyethylene glycol (PEG) is commonly used to improve protein stability and therapeutic efficacy, the optimal location for attaching PEG onto proteins is not well understood. Here, we present a cell-free protein synthesis-based screening platform that facilitates site-specific PEGylation and efficient evaluation of PEG attachment efficiency, thermal stability, and activity for different variants of PEGylated T4 lysozyme, including a di-PEGylated variant. We also report developing a computationally efficient coarse-grain simulation model as a potential tool to narrow experimental screening candidates. We use this simulation method as a novel tool to evaluate the locational impact of PEGylation. Using this screen, we also evaluated the predictive impact of PEGylation site solvent accessibility, conjugation site structure, PEG size, and double PEGylation. Our findings indicate that PEGylation efficiency, protein stability, and protein activity varied considerably with PEGylation site, variations that were not well predicted by common PEGylation guidelines. Overall our results suggest current guidelines are insufficiently predictive, highlighting the need for experimental and simulation screening systems such as the one presented here.


Assuntos
Bacteriófago T4/enzimologia , Escherichia coli/química , Expressão Gênica , Modelos Biológicos , Muramidase/biossíntese , Polietilenoglicóis/química , Proteínas Virais/biossíntese , Bacteriófago T4/genética , Sistema Livre de Células/química , Escherichia coli/genética , Muramidase/química , Muramidase/genética , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Proteínas Virais/química , Proteínas Virais/genética
9.
Bioengineered ; 8(4): 325-330, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27791452

RESUMO

Recently reported shelf-stable, on-demand protein synthesis platforms are enabling new possibilities in biotherapeutics, biosensing, biocatalysis, and high throughput protein expression. Lyophilized cell-free protein expression systems not only overcome cold-storage limitations, but also enable stockpiling for on-demand synthesis and completely sterilize the protein synthesis platform. Recently reported high-yield synthesis of cytotoxic protein Onconase from lyophilized E. coli extract preparations demonstrates the utility of lyophilized cell-free protein expression and its potential for creating on-demand biotherapeutics, vaccines, biosensors, biocatalysts, and high throughput protein synthesis.


Assuntos
Fracionamento Celular/métodos , Sistema Livre de Células/metabolismo , Escherichia coli/metabolismo , Liofilização/métodos , Biossíntese de Proteínas/fisiologia , Engenharia de Proteínas/métodos , Animais , Fracionamento Celular/tendências , Previsões , Liofilização/tendências , Humanos
10.
FEBS Lett ; 588(17): 2755-61, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24931378

RESUMO

The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.


Assuntos
Biologia Sintética/métodos , Animais , Sistema Livre de Células , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA