Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Wiley Interdiscip Rev RNA ; 15(2): e1836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38453211

RESUMO

Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Assuntos
Arabidopsis , Ribonuclease P , Humanos , Ribonuclease P/genética , Ribonuclease P/química , Ribonuclease P/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleases/metabolismo , Endonucleases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA/metabolismo , Arabidopsis/genética , Especificidade por Substrato
2.
J Biol Chem ; 299(11): 105327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806495

RESUMO

tRNAs are typically transcribed with extended 5' and 3' ends that must be removed before they attain their active form. One of the first steps of tRNA processing in nearly every organism is the removal of the 5' leader sequence by ribonuclease P (RNase P). Here, we investigate a recently discovered class of RNase P enzymes, Homologs of Aquifex RNase P (HARPs). In contrast to other RNase Ps, HARPs consist only of a metallonuclease domain and lack the canonical substrate recognition domain essential in other classes of proteinaceous RNase P. We determined the cryo-EM structure of Aquifex aeolicus HARP (Aq880) and two crystal structures of Hydrogenobacter thermophilus HARP (Hth1307) to reveal that both enzymes form large ring-like assemblies: a dodecamer in Aq880 and a tetradecamer in Hth1307. In both oligomers, the enzyme active site is 42 Å away from a positively charged helical region, as seen in other protein-only RNase P enzymes, which likely serves to recognize and bind the elbow region of the pre-tRNA substrate. In addition, we use native mass spectrometry to confirm and characterize the previously unreported tetradecamer state. Notably, we find that multiple oligomeric states of Hth1307 are able to cleave pre-tRNAs. Furthermore, our single-turnover kinetic studies indicate that Hth1307 cleaves pre-tRNAs from multiple species with a preference for native substrates. These data provide a closer look at the nuanced similarities and differences in tRNA processing across disparate classes of RNase P.


Assuntos
RNA Bacteriano , Ribonuclease P , Ribonuclease P/metabolismo , RNA Bacteriano/metabolismo , Cinética , Conformação de Ácido Nucleico , RNA de Transferência/metabolismo , Bactérias/metabolismo , Precursores de RNA/metabolismo
3.
RNA ; 27(4): 420-432, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33380464

RESUMO

Mitochondrial diseases linked to mutations in mitochondrial (mt) tRNA sequences are common. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, in most cases the first step of tRNA processing is the removal of the 5' leader of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1), catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5' end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here, we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAIle, (mt)pre-tRNALeu(UUR), and (mt)pre-tRNAMet affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity (KD s are approximately two- to sixfold higher than that of wild-type), while the majority of mutations decrease 5' end processing and methylation activity catalyzed by mtRNase P (up to ∼55% and 90% reduction, respectively). Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.


Assuntos
Metiltransferases/química , Doenças Mitocondriais/genética , Precursores de RNA/química , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/química , RNA de Transferência/química , Pareamento de Bases , Sequência de Bases , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação , Dobramento de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
4.
Anticancer Res ; 38(9): 5043-5048, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30194148

RESUMO

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer that disproportionately affects women with darker skin and is often treated with paclitaxel (PTX). Here, the effect of vitamin D on p53-positive DU4475 cells and its ability to decrease the IC50 of PTX in these cells were investigated. MATERIALS AND METHODS: The growth inhibitory effects of vitamin D on DU4475 cells and the effect of PTX plus vitamin D on overall TNBC cell viability was assessed using CellTiter-Glo®. RESULTS: Vitamin D increased proliferation of DU4475 cells at low concentrations and lowered the IC50 of PTX. However, it did not change the IC50 of PTX in MDA-MB-231 cells which remained largely viable. CONCLUSION: The effect of vitamin D on DU4475 cell viability was different than in other TNBC cells. The effect of PTX on DU4475 cells was enhanced with vitamin D. MDA-MB-231 cells were relatively resistant to the effects of PTX.


Assuntos
Paclitaxel/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Vitamina D/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Mutação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA