Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
2.
Foods ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063311

RESUMO

The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.

3.
Am J Bot ; : e16318, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654555

RESUMO

PREMISE: Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids. We therefore expect that genera with many dioecious species have fewer polyploids, leading to a negative association between polyploidy and dioecy across genera. METHODS: We used three publicly available databases to determine ploidy and sexual systems for 131 genera and 546 species. We quantified (1) the relationship between the frequency of polyploid species and the frequency of dioecious species across genera, and (2) the proportion of polyploids with hermaphroditism and dioecy across species, adjusting for phylogenetic history. RESULTS: Across genera, we found a negative relationship between the proportion of polyploids and the proportion of dioecious species, a consistent trend across clades. Across all species, we found that sexual system (dioecious or not) was not associated with polyploidy. CONCLUSIONS: Polyploids are rare in genera in which the majority of species are dioecious, consistent with the theory that self-reproduction favors polyploid establishment. The low frequency of polyploidy among dioecious species indicates the association is not as widespread as previously suggested. Our findings are consistent with previous studies identifying a positive relationship between the two traits, but only if polyploidy promotes a transition to dioecy, and not the reverse.

4.
Sci Rep ; 13(1): 17918, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864021

RESUMO

Mucosal tissues serve as the first defense line and their commensal microbiota play a role in sustaining of host health. This study aimed to isolate and evaluate a putative probiotic strain on various mucosal regions. Lactobacillus sakei HEM 224 was isolated from traditional Korean kimchi and identified. In the safety assessment L. sakei HEM 224 showed negative results for hemolysis, biogenic amine production and transferable antibiotic resistance. The probiotic potential of strain HEM 224 in diverse mucosal areas was shown in two different models, viz. a murine model with colitis induced by dextran sulfate sodium (DSS) and an allergic airway inflammation model induced by ovalbumin (OVA). In the colitis model, oral administration of L. sakei HEM 224 improved colitis physiology with immunomodulation, enhancing barrier components and gut microbiota alteration. In the allergic airway inflammation model, the intranasal administration of the strain decreased type 2 inflammation and enhanced epithelial barrier integrity from the airways. These results demonstrate that L. sakei HEM 224 can ameliorate inflammatory conditions in both the gastrointestinal and respiratory tracts through the reinforcement of the epithelial barrier and immunomodulation.


Assuntos
Colite , Latilactobacillus sakei , Probióticos , Humanos , Camundongos , Animais , Inflamação , Colite/induzido quimicamente , Colite/terapia , Sistema Respiratório , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
6.
PLoS One ; 18(2): e0280850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36735734

RESUMO

Hepatobiliary abnormality and metabolic disorders are frequently observed complications in patients with inflammatory bowel diseases (IBD). Given that microbiota dysbiosis is a common pathophysiological feature of both IBD and metabolic diseases, we examined how the IBD-induced dysbiosis affects the host metabolism and contributes to the development of associated metabolic diseases using germ-free (GF) mice transplanted with fecal microbiota of DSS-induced colitis mice. There was no significant change in inflammation or barrier integrity in the gut of GF mice that received microbiota from colitis mice compared to their counterparts that were transplanted with microbiota from non-colitis healthy mice. Interestingly, it was observed that the GF recipients of colitis-induced altered microbiota showed a significant decrease in the weight of adipose tissues including mesenteric, epididymal, subcutaneous, and brown fat without any change in body weight, which was accompanied by abnormalities in adipose tissue functions such as fat storage and adiponectin production. Transplantation of colitis-induced altered microbiota also disrupted hepatic lipid metabolism in the GF recipient mice, which was observed by increases in synthesis and accumulation of cholesterol and bile acids in hepatocytes and a decrease in plasma HDL-cholesterol. Additional observations including elevated plasma levels of insulin, decreased hepatic production of FGF21, and decreased levels of fecal short chain fatty acids (SCFAs) and hepatic expression of SCFA receptors led to a conclusion that the transplantation of the colitis-associated dysbiotic microbiota was causally associated with impairments of insulin action and FGF21-adiponectin axis, possibly due to the low SCFA-producing capacity of the colonized microbiota, leading to metabolic abnormalities including adipose tissue dysfunction and dysregulated hepatic lipid metabolism. Our findings suggest potential mechanisms that explain how colitis-associated gut dysbiosis may contribute to the development of metabolic dysfunctions, which could be applied to clinical practice to improve the efficacy of treatment of IBD patients with comorbid metabolic disorders or vice versa.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Insulinas , Animais , Camundongos , Adiponectina/metabolismo , Colesterol , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL
8.
Probiotics Antimicrob Proteins ; 15(3): 451-459, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34647241

RESUMO

The functional characteristics of Lactobacillus johnsonii BFE6154, first isolated from Maasai traditional fermented milk, were previously identified in vitro, but its cholesterol-lowering properties have not been verified yet. In this study, we investigated the effect of L. johnsonii BFE6154 on cholesterol regulation and the mode of action. Stimulation of Caco-2 intestinal epithelial cells with L. johnsonii BFE6154 downregulated the gene expression of Niemann-Pick C1-like 1 (NPC1L1) through the activation of liver X receptor (LXR). Also, stimulation of HepG2 cells with the metabolites produced by L. johnsonii BFE6154 revealed an increase in the gene expression of low-density lipoprotein receptor (LDLR). Oral administration of L. johnsonii BFE6154 in mice receiving a high-fat and high-cholesterol diet (HFHCD), reduced total cholesterol and low-density lipoprotein-cholesterol (LDL) and increased high-density lipoprotein-cholesterol (HDL) in the blood, compared to the control. Diet-induced hypercholesterolemic mice receiving L. johnsonii BFE6154 showed a suppression of cholesterol absorption under the control of NPC1L1 in the intestine. Furthermore, L. johnsonii BFE6154 consumption ameliorated the hepatic cholesterol level and LDLR expression, which was reduced by HFHCD. These molecular modulations led to the increase of cholesterol excretion and the decrease of cholesterol levels in the feces and liver, respectively. Taken together, these results suggest that L. johnsonii BFE6154 may protect against diet-induced hypercholesterolemia through the regulation of cholesterol metabolism in the intestine and liver.


Assuntos
Hipercolesterolemia , Lactobacillus johnsonii , Humanos , Camundongos , Animais , Hipercolesterolemia/etiologia , Hipercolesterolemia/terapia , Células CACO-2 , Proteínas de Membrana Transportadoras/metabolismo , Colesterol , Dieta , LDL-Colesterol/metabolismo
9.
Front Microbiol ; 14: 1292266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38449878

RESUMO

Introduction: Allergic airway diseases are one of the serious health problems in worldwide and allergic airway inflammation is a prerequisite led to the exacerbated situation such as mucus hypersecretion, epithelial barrier damage and microbiota dysbiosis. Because of side effects and low efficiencies of current therapeutics, the need for novel alternatives has been urged. Probiotics in which have diverse and beneficial modulatory effects have been applied to the airway inflammation model and the underlying mechanism needs to be investigated. Methods: We aimed to evaluate whether our target strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1TM) isolated from green tea, can ameliorate allergic airway inflammation in mice and to figure out the mechanism. We induced allergic airway inflammation to mice by ovalbumin (OVA) and administered GTB1 orally and the immune and epithelial barrier markers were assessed. The gut metabolite and microbiota were also analysed, and the in vitro cell-line experiment was introduced to confirm the hypothesis of the study. Results: GTB1 ameliorated type 2 inflammation and suppressed mucin hypersecretion with the inhibition of MUC5AC in inflamed mice. Moreover, GTB1 increased the butyrate production and the relative abundance of butyrate producer, Clostridium cluster IV. We assumed that butyrate may have a potential role and investigated the effect of butyrate in mucin regulation via human airway epithelial cell line, A549. Butyrate significantly reduced the gene expression of MUC5AC in A549 cells suggesting its regulatory role in mucus production. Conclusion: Therefore, our study demonstrates that the oral administration of GTB1 can ameliorate allergic airway inflammation and mucin hypersecretion by butyrate production.

12.
J Appl Microbiol ; 132(1): 562-570, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34133840

RESUMO

AIMS: Two putative probiotic strains, Lacticaseibacillus (Lc.) rhamnosus BFE5264 and Lactiplantibacillus (Lp.) plantarum NR74, have been shown to suppress cholesterol uptake and promote cholesterol efflux in Caco-2 cells. However, an in vivo beneficial effect of these strains on plasma cholesterol levels has not been verified yet; neither have the underlying mechanisms of regulating cholesterol metabolism clarified thus far. This study has focused on these two aspects. METHODS AND RESULTS: A murine model has been used, and the animals receiving a high-fat/high-cholesterol diet showed elevated plasma cholesterol levels. However, supplementation of Lc. rhamnosus BFE5264 and Lp. plantarum NR74 resulted in the down regulation of Niemann-Pick C1-like 1 (NPC1L1) in the intestine in addition to counteracting the diet-induced suppression of low-density lipoprotein receptor expression in the liver. ATP Binding Cassette Subfamily A Member 1 (ABCA1) was only significantly increased upon administration of Lc. rhamnosus BFE5264. CONCLUSIONS: The present findings demonstrate that supplementation with Lc. rhamnosus BFE5264 and Lp. plantarum NR74 may improve diet-induced hypercholesterolemia by suppression of cholesterol absorption in the small intestine and by supporting the regulation of cholesterol metabolism in the liver. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to understanding the beneficial effects of probiotics on host cholesterol metabolism and underlying mechanisms related to hypercholesterolemia.


Assuntos
Hipercolesterolemia , Probióticos , Animais , Células CACO-2 , Colesterol/metabolismo , Dieta , Humanos , Hipercolesterolemia/metabolismo , Absorção Intestinal , Intestinos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos
13.
Environ Microbiol ; 23(6): 3077-3098, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899316

RESUMO

Chronic respiratory diseases are part of accumulating health problems partly due to worldwide increase in air pollution. By their antimicrobial and immunomodulatory properties, some probiotics constitute promising alternatives for the prevention and treatment of chronic respiratory diseases. We have isolated Bacillus strains from Korean fermented foods and selected three potentially probiotic strains (two Bacillus subtilis and one Bacillus amyloliquefaciens) based on safety, antimicrobial efficacy, activity against airborne pathogens and their immunomodulatory properties in vivo. Safety evaluation included in silico analysis for confirming absence of virulence genes. Safety for the respiratory tract was confirmed by an in vivo pathogenicity test using a murine model. Antimicrobial activity was displayed against several airborne pathogens. Potential antimicrobial metabolites such as 2,3-butanediol and propylene glycol were identified as possible antagonistic agents. Immunomodulatory properties in vitro were confirmed by upregulation of IL-10 expression in a macrophage cell line. Intranasal instillation and inhalation in an ovalbumin (OVA)-induced lung inflammation murine model reduced T helper type 2 (Th2) cytokines at transcriptional and protein levels in the lungs. The safety and potentially beneficial role of these Bacillus strains could be demonstrated for the respiratory tract of a murine model.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Anti-Inflamatórios , Bacillus/genética , Camundongos , Sistema Respiratório
14.
Probiotics Antimicrob Proteins ; 13(1): 60-71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32607730

RESUMO

Unveiling and understanding differences in physiological features below the species level may serve as an essential fast-screening tool for selecting strains that can promote a specific probiotic effect. To study the intra-species diversity of Bacillus, a genus with a wide range of enzyme activities and specificity, 190 Bacillus strains were isolated from traditional Korean fermented food products. Altogether, in the preliminary safety screening, 8 of these strains were found negative for lecithinase and hemolysis activity and were selected for further investigations. On the basis of different levels of enzyme functionalities (high or low proteolytic, amylolytic, and lipolytic (PAL) activities), two Bacillus subtilis strains were selected for an in vivo study. Each of the two strains was separately administered at a level of 1 × 108 CFU per day to C57BL/6 mice that were fed 60% high-fat diet ad libitum for 8 weeks, while Xenical, an anti-obesity drug, was used as a positive control in the experimental setup. B. subtilis M34 and B. subtilis GS40a with low and high amylolytic activities, respectively, induced significantly different and contrasting physiological effects. The production of short-chain fatty acids appeared to be closely associated with a shift in the gut microbiota.


Assuntos
Bacillus subtilis/isolamento & purificação , Dieta Hiperlipídica/efeitos adversos , Alimentos Fermentados/microbiologia , Microbioma Gastrointestinal , Obesidade , Probióticos , Segurança , Animais , Bacillus subtilis/classificação , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/terapia , Probióticos/isolamento & purificação , Probióticos/farmacologia , República da Coreia
15.
CVIR Endovasc ; 3(1): 81, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33188614

RESUMO

PURPOSE: To evaluate the technical success of percutaneous retrograde revascularization of the superior mesenteric artery (SMA) via the celiac artery (CA) in patients with chronic mesenteric ischemia (CMI). METHODS: We performed a retrospective review of three patients with chronic total occlusions (CTOs) of the origin of SMA which were recanalized retrograde via collaterals of the CA after frustrating attempt of antegrade revascularization from the abdominal aorta in our institute between May 2019 and June 2020. RESULTS: All technical procedures of retrograde revascularization of CTOs of SMA via collaterals of the CA were successful. The clinical outcome resulted in a sustained resolution of abdominal pain in all cases. CONCLUSION: Retrograde recanalization of SMA via collaterals from the CA seems to be a successful endovascular option for patients with CMI and a chronically occluded superior mesenteric artery when antegrade recanalization fails as far as it can be concluded from the small number of presented cases.

16.
Front Bioeng Biotechnol ; 8: 581778, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042979

RESUMO

The gut microbiome is considered as a promising target for future non-conventional therapeutic treatment of inflammatory and infectious diseases. The search for appropriate safe and beneficial (lactic acid bacterial and other) putative probiotic strains and/or their antimicrobial metabolites represents a challenging approach for combating several problematic and emerging infections. The process of selecting suitable strains, especially of lactic acid bacteria (LAB) with superior properties, has been accelerated and intensified during the past two decades, also thanks to recent developments in lab techniques. Currently, special focus is on the potential of antimicrobial metabolites produced by some LAB strains and their application as active therapeutic agents. The vision is to develop a scientific basis for 'biotherapeutics' as alternative to conventional approaches in both human and veterinary medicine. Consequently, innovative and promising applications of LAB to the therapeutic practice are presently emerging. An overview of the existing literature indicates that some antimicrobial metabolites such as bacteriocins, widely produced by different bacterial species including LAB, are promising biotherapeutic agents for controlling infections caused by potential pathogens, such as Clostridium and Clostridiodes. Non-conventional, safe and well designed therapeutic treatments may contribute to the improvement of gut dysbiotic conditions. Thereby gut homeostasis can be restored and inflammatory conditions such as gastrointestinal colitis ameliorated. Combining the knowledge on the production, characterization and application of bacteriocins from probiotic LAB, together with their antibacterial properties, appears to be a promising and novel approach in biotherapy. In this overview, different scenarios for the control of Clostridium spp. by application of bacteriocins as therapeutic agents, also in synergistic combination with antibiotics, will be discussed.

17.
Microorganisms ; 8(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992853

RESUMO

The bacteriocin-producing strain Enterococcus faecium ST10Bz, isolated from boza, a Bulgarian cereal-based beverage, exhibited strong activity against Listeria strains, vancomycin-resistant and other Enterococcus strains, but not against most of the other lactic acid bacteria (LAB) strains included in the test panel. Bacteriocin ST10Bz was proven as a stable antimicrobial, even after exposure to various environmental conditions, including varying pH values, temperatures, and commonly used chemicals in industry and laboratory practice. Bacteriocin activity against L. monocytogenes ATCC®15313™ was recorded at 25,600 AU/mL when the producer strain was cultured in MRS broth at 25 °C and 30 °C, and 19,200 AU/mL, when cultured at 37 °C. Additionally, bacteriocin ST10Bz exhibited bactericidal mode of action when added to actively growing cultures of L. monocytogenes ATCC®15313™ and Enterococcus faecalis 200A. E. faecium ST10Bz was susceptible to the antibiotics kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, tetracycline, and vancomycin; with no evidence for vanA, B, C, D, E, or G genes. PCR analysis of DNA from strain ST10Bz generated positive results for presence of some bacterial adhesion genes, including map, mub and ef-tu, as well as the gamma aminobutyric acid (GABA) production-related gene, gad. Under simulated gastrointestinal conditions in single and co-culture with L. monocytogenes ATCC®15313™ and E. faecalis 200A, E. faecium ST10Bz showed a high survival rate and the ability to reduce the viable numbers of the two test strains.

18.
J Med Food ; 23(8): 852-861, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32513044

RESUMO

In this study, we explored whether the use of Streptococcus thermophilus LM1012 (TL-LM1012) as a safe probiotic exerts hepatoprotective effects by suppressing oxidative stress and inflammation in vitro and alleviating aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) production in vivo. In a series of safety tests, TL-LM1012 was found to have a negative response to hemolysis and biogenic amines, as well as susceptibility to antibiotics. TL-LM1012 protected cell viability and suppressed cytotoxicity by inhibiting oxidative stress and induced heme oxygenase-1 and superoxide dismutase activity in a dose-dependent manner in diesel exhaust particulate matter (DEPM)-treated HepG2 cells. Moreover, proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß, were suppressed in DEPM-treated splenocytes. In DEPM-treated mice, oral administration of TL-LM1012 regulated AST, ALT, and LDH production in the serum after 14 days of treatment. These findings indicate that TL-LM1012, a safe probiotic, provides a potent preventive or therapeutic effect against liver disease caused by air pollution.


Assuntos
Poluentes Atmosféricos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Probióticos/uso terapêutico , Streptococcus thermophilus , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocinas , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Estresse Oxidativo , Material Particulado/toxicidade , Emissões de Veículos/toxicidade
20.
Sci Rep ; 10(1): 3030, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080239

RESUMO

The objective of this study is to analyze noise patterns during 599 visceral surgical procedures. Considering work-safety regulations, we will identify immanent noise patterns during major visceral surgeries. Increased levels of noise are known to have negative health impacts. Based on a very fine-grained data collection over a year, this study will introduce a new procedure for visual representation of intra-surgery noise progression and pave new paths for future research on noise reduction in visceral surgery. Digital decibel sound-level meters were used to record the total noise in three operating theatres in one-second cycles over a year. These data were matched to archival data on surgery characteristics. Because surgeries inherently vary in length, we developed a new procedure to normalize surgery times to run cross-surgery comparisons. Based on this procedure, dBA values were adjusted to each normalized time point. Noise-level patterns are presented for surgeries contingent on important surgery characteristics: 16 different surgery types, operation method, day/night time point and operation complexity (complexity levels 1-3). This serves to cover a wide spectrum of day-to-day surgeries. The noise patterns reveal significant sound level differences of about 1 dBA, with the most-common noise level being spread between 55 and 60 dBA. This indicates a sound situation in many of the surgeries studied likely to cause stress in patients and staff. Absolute and relative risks of meeting or exceeding 60 dBA differ considerably across operation types. In conclusion, the study reveals that maximum noise levels of 55 dBA are frequently exceeded during visceral surgical procedures. Especially complex surgeries show, on average, a higher noise exposure. Our findings warrant active noise management for visceral surgery to reduce potential negative impacts of noise on surgical performance and outcome.


Assuntos
Ruído Ocupacional , Exposição Ocupacional/efeitos adversos , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Vísceras/cirurgia , Humanos , Salas Cirúrgicas , Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA