Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 239: 113932, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749165

RESUMO

Quaternary ammonium salts (QAS) are widely used in medicine, industry and agriculture as disinfectants, biocides, and fungicides. QAS have the ability to coat various surfaces, prevent adhesion of microorganisms to them and inhibit the formation of biofilm. A group of surfactants derived from benzoic acid with different chemical structures was tested: monomeric QAS with different alkyl chain lengths (C12, C14, C16), gemini QAS containing 12-carbon alkyl chains and linkers of various lengths (3,4,6 methylene groups), as well as multifunctional QAS. Among the tested surfactants, monomeric QAS showed the highest bactericidal and fungicidal activity. All three groups of tested compounds inhibited the filamentation of C. albicans. The best antimicrobial activity was demonstrated by the monomeric surfactant C12AA, while the multifunctional equivalent (2xC12AA) was characterized by good anti-adhesive activity. All tested compounds are non-mutagenic and cause low hemolysis of sheep erythrocytes. Multifunctional and gemini surfactants are also non-toxic.


Assuntos
Candida albicans , Hemólise , Testes de Sensibilidade Microbiana , Tensoativos , Tensoativos/farmacologia , Tensoativos/química , Tensoativos/síntese química , Ovinos , Animais , Candida albicans/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química
2.
J Membr Biol ; 249(5): 645-661, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27173678

RESUMO

Drug delivery technology is still a dynamically developing field of medicine. The main direction in nanotechnology research (nanocarriers, nanovehicles, etc.) is efficient drug delivery to target cells with simultaneous drug reduction concentration. However, nanotechnology trends in reducing the carrier sizes to several nanometers limit the volume of the loaded substance and may pose a danger of uncontrolled access into the cells. On the other hand, nanoparticles larger than 200 nm in diameter have difficulties to undergo rapid diffusional transport through cell membranes. The main advantage of large nanoparticles is higher drug encapsulation efficiency and the ability to deliver a wider array of drugs. Our present study contributes a new approach with large Tween 80 solid lipid nanoparticles SLN (i.e., hydrodynamic GM-SLN-glycerol monostearate, GM, as the lipid and ATO5-SLNs-glyceryl palmitostearate, ATO5, as the lipid) with diameters DH of 379.4 nm and 547 nm, respectively. They are used as drug carriers alone and in combination with electroporation (EP) induced by millisecond pulsed electric fields. We evaluate if EP can support the transport of large nanocarriers into cells. The study was performed with two cell lines: human colon adenocarcinoma LoVo and hamster ovarian fibroblastoid CHO-K1 with coumarin 6 (C6) as a fluorescent marker for encapsulation. The biological safety of the potential treatment procedure was evaluated with cell viability after their exposure to nanoparticles and EP. The EP efficacy was evaluated by FACS method. The impact on intracellular structure organization of cytoskeleton was visualized by CLSM method with alpha-actin and beta-tubulin. The obtained results indicate low cytotoxicity of both carrier types, free and loaded with C6. The evaluation of cytoskeleton proteins indicated no intracellular structure damage. The intracellular uptake and accumulation show that SLNs do not support transport of C6 coumarin. Only application of electroporation improved the transport of encapsulated and free C6 into both treated cell lines.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Eletroporação , Lipídeos/química , Nanopartículas/química , Animais , Transporte Biológico , Varredura Diferencial de Calorimetria , Linhagem Celular , Sobrevivência Celular , Cumarínicos/administração & dosagem , Cumarínicos/química , Cumarínicos/metabolismo , Citoesqueleto/metabolismo , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Tiazóis/administração & dosagem , Tiazóis/química , Tiazóis/metabolismo
3.
Bioelectrochemistry ; 110: 19-31, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26946158

RESUMO

Nanocarriers and electroporation (also named electropermeabilization) are convenient methods to increase drug transport. In the current study, we present an effective support of drug delivery into cancer cells, utilizing these methods. We compare the efficiency of each of them and their combination. Multifunctional solid lipid nanoparticles (SLNs) loaded with a cyanine-type IR-780 - acting as a diagnostic agent and a photosensitizer, and a flavonoid derivative - baicalein (BAI) or fisetin (FIS) as a therapeutic cargo - were fabricated via solvent-diffusion method. A therapy supplemented with flavonoids may provide a more precise method to apply desirable lower drug doses and is more likely to result in lower toxicity and a decrease in tumor growth. The SLNs were stabilized with Phospholipon 90G at various concentrations; cetyl palmitate (CP) was applied as a solid matrix. The obtained nanosystems were characterized by dynamic light scattering (size along with size distribution), UV-vis (cargos encapsulation efficiency) and atomic force microscopy (morphology and shape). The obtained SLNs were used as drug carriers alone and in combination with electropermeabilization induced by millisecond pulsed electric fields of high intensity. Two cell lines were selected for the study: LoVo and CHO-K1. The viability was assessed after electroporation alone, the use of electroporation and nanoparticles, and nanoparticles or drugs alone. The intracellular accumulation of cyanine IR-780 and the impact on intracellular structure organization of cytoskeleton was visualized with confocal microscopy method with alpha-actin and beta-tubulin. In this study, the efficacy of nanoparticles with mixed cargo, additionally enhanced by electroporation, is demonstrated to act as an anticancer modality to eliminate cancer cells.


Assuntos
Neoplasias do Colo/patologia , Portadores de Fármacos/química , Eletroporação , Flavonoides/química , Indóis/química , Nanopartículas/química , Palmitatos/química , Animais , Células CHO , Linhagem Celular Tumoral , Chlorocebus aethiops , Neoplasias do Colo/tratamento farmacológico , Cricetulus , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/efeitos da radiação , Flavanonas/química , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonóis , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Biomicrofluidics ; 10(1): 014116, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26909122

RESUMO

The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of tested nanocapsules can result from the type of last PE layer and their different surface charge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA