RESUMO
England's 10 national parks are renowned for their landscapes, wildlife, and recreational value. However, surface waters in the national parks may be vulnerable to pollution from human-use chemicals, such as active pharmaceutical ingredients (APIs), because of factors like ineffective wastewater treatment, seasonal tourism, a high proportion of elderly residents, and the presence of low-flow water bodies that limit dilution. The present study determined the extent of API contamination in the English national parks by monitoring 54 APIs in 37 rivers across all national parks over two seasons. Results were compared to existing data sets for UK cities and to concentration thresholds for ecological impacts and antimicrobial resistance selection. Results revealed widespread contamination of the national parks, with APIs detected at 52 out of 54 sites and in both seasons. Thirty-one APIs were detected, with metformin, caffeine, and paracetamol showing the highest mean concentrations and cetirizine, metformin, and fexofenadine being the most frequently detected. While total API concentrations were generally lower than seen previously in UK cities, locations in the Peak District and Exmoor had higher concentrations than most city rivers. Fourteen locations had concentrations of either amitriptyline, carbamazepine, clarithromycin, diltiazem, metformin, paracetamol, or propranolol above levels of concern for fish, invertebrates, and algae or for selection for antimicrobial resistance. Therefore, API pollution of the English national parks appears to pose risks to ecological health and potentially human health through recreational water use. Given that these parks are biodiversity hotspots with protected ecosystems, there is an urgent need for improved monitoring and management of pharmaceutical pollution and pollution more generally not only in national parks in England but also in similar environments across the world. Environ Toxicol Chem 2024;43:2422-2435. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Monitoramento Ambiental , Parques Recreativos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Inglaterra , Preparações Farmacêuticas/análise , Rios/químicaRESUMO
Pharmaceuticals and personal care products (PPCPs) are an indispensable component of a healthy society. However, they are well-established environmental contaminants, and many can elicit biological disruption in exposed organisms. It is now a decade since the landmark review covering the top 20 questions on PPCPs in the environment (Boxall et al., 2012). In the present study we discuss key research priorities for the next 10 years with a focus on how regions where PPCPs pose the greatest risk to environmental and human health, either now or in the future, can be identified. Specifically, we discuss why this problem is of importance and review our current understanding of PPCPs in the aquatic environment. Foci include PPCP occurrence and what drives their environmental emission as well as our ability to both quantify and model their distribution. We highlight critical areas for future research including the involvement of citizen science for environmental monitoring and using modeling techniques to bridge the gap between research capacity and needs. Because prioritization of regions in need of environmental monitoring is needed to assess future/current risks, we also propose four criteria with which this may be achieved. By applying these criteria to available monitoring data, we narrow the focus on where monitoring efforts for PPCPs are most urgent. Specifically, we highlight 19 cities across Africa, Central America, the Caribbean, and Asia as priorities for future environmental monitoring and risk characterization and define four priority research questions for the next 10 years. Environ Toxicol Chem 2024;43:575-588. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Cosméticos , Poluentes Químicos da Água , Humanos , Cosméticos/toxicidade , Cosméticos/análise , Monitoramento Ambiental/métodos , Ecotoxicologia , Ásia , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análiseRESUMO
During their production, use, and disposal, active pharmaceutical ingredients (APIs) are released into aquatic systems. Because they are biologically active molecules, APIs have the potential to adversely affect nontarget organisms. We used the results of a global monitoring study of 61 APIs alongside available ecotoxicological and pharmacological data to assess the potential ecotoxicological effects of APIs in rivers across the world. Approximately 43.5% (461 sites) of the 1052 sampling locations monitored across 104 countries in a recent global study had concentrations of APIs of concern based on apical, nonapical, and mode of action-related endpoints. Approximately 34.1% of the 137 sampling campaigns had at least one location where concentrations were of ecotoxicological concern. Twenty-three APIs occurred at concentrations exceeding "safe" concentrations, including substances from the antidepressant, antimicrobial, antihistamine, ß-blocker, anticonvulsant, antihyperglycemic, antimalarial, antifungal, calcium channel blocker, benzodiazepine, painkiller, progestin, and lifestyle compound classes. At the most polluted sites, effects are predicted on different trophic levels and on different endpoint types. Overall, the results show that API pollution is a global problem that is likely negatively affecting the health of the world's rivers. To meet the United Nations' Sustainable Development Goals, work is urgently needed to tackle the problem and bring concentrations down to an acceptable level. Environ Toxicol Chem 2022;41:2008-2020. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Monitoramento Ambiental , Preparações Farmacêuticas , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análiseRESUMO
Information on the sorption of active pharmaceutical ingredients (APIs) in soils and sediments is needed for assessing the environmental risks of these substances yet these data are unavailable for many APIs in use. Predictive models for estimating sorption could provide a solution. The performance of existing models is, however, often poor and most models do not account for the effects of soil/sediment properties which are known to significantly affect API sorption. Therefore, here, we use a high-quality dataset on the sorption behavior of 54 APIs in 13 soils and sediments to develop new models for estimating sorption coefficients for APIs in soils and sediments using three machine learning approaches (artificial neural network, random forest and support vector machine) and linear regression. A random forest-based model, with chemical and solid descriptors as the input, was the best performing model. Evaluation of this model using an independent sorption dataset from the literature showed that the model was able to predict sorption coefficients of 90% of the test set to within a factor of 10 of the experimental values. This new model could be invaluable in assessing the sorption behavior of molecules that have yet to be tested and in landscape-level risk assessments.
Assuntos
Preparações Farmacêuticas , Poluentes do Solo , Adsorção , Sedimentos Geológicos , Solo , Poluentes do Solo/análiseRESUMO
The life-critical matrices of air and water are among the most complex chemical mixtures that are ever encountered. Ultrahigh-resolution mass spectrometers, such as the Orbitrap, provide unprecedented analytical capabilities to probe the molecular composition of such matrices, but the extraction of non-targeted chemical information is impractical to perform via manual data processing. Automated non-targeted tools rapidly extract the chemical information of all detected compounds within a sample dataset. However, these methods have not been exploited in the environmental sciences. Here, we provide an automated and (for the first time) rigorously tested methodology for the non-targeted compositional analysis of environmental matrices using coupled liquid chromatography-mass spectrometric data. First, the robustness and reproducibility was tested using authentic standards, evaluating performance as a function of concentration, ionization potential, and sample complexity. The method was then used for the compositional analysis of particulate matter and surface waters collected from worldwide locations. The method detected >9600 compounds in the individual environmental samples, arising from critical pollutant sources, including carcinogenic industrial chemicals, pesticides, and pharmaceuticals among others. This methodology offers considerable advances in the environmental sciences, providing a more complete assessment of sample compositions while significantly increasing throughput.
Assuntos
Praguicidas , Poluentes Químicos da Água , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Espectrometria de Massas , Praguicidas/análise , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análiseRESUMO
The environmental occurrence, fate and ecotoxicity of emerging contaminants (ECs) has been the subject of increasing research, policy and public concern over the past two decades. While a wide range of publications have examined the environmental persistence and sediment/soil interactions of ECs following their discharge into aquatic environments, the extent to which ECs are sequestered in estuarine sediments, and the impact of this on their environmental persistence and supply to the ocean, in comparison remains unclear. This Article examines the environmental concentrations of seven, relatively water-soluble and environmentally mobile, ECs (including pharmaceuticals, perfluoroalkyl compounds, and plasticisers) in dated intertidal saltmarsh cores from two contrasting estuarine sites in the southern U.K. (one heavily urbanised/industrial, the other non-urbanised). Mean sediment EC concentrations are similar in both estuarine systems (in the range 0.1 (acetaminophen) to 17 (4-hydroxyacetophenone) ng/g dry weight). Despite their variable reported Log Kow values (from ca. 0.5 to > 7), the ECs are all apparently mobile in the marsh systems studied, and where subsurface concentration maxima are present these most likely relate to local flushing or diffusive processes and cannot be clearly linked to likely input trends or changes in sediment geochemistry (including sedimentary organic carbon content). The "estuarine filter" here, at least with respect to intertidal saltmarsh sediments, shows reduced potential to sequester the seven ECs examined and mediate their supply to coastal and shelf environments.
Assuntos
Fluorocarbonos , Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água/análiseRESUMO
In order to assess the environmental risk of a pharmaceutical, information is needed on the sorption of the compound to solids. Here we use a high-quality database of measured sorption coefficients, all determined following internationally recognised protocols, to evaluate models that have been proposed for estimating sorption of pharmaceuticals from chemical structure, some of which are already being used for environmental risk assessment and prioritization purposes. Our analyses demonstrate that octanol-water partition coefficient (Kow) alone is not an effective predictor of ionisable pharmaceutical sorption in soils. Polyparameter models based on pharmaceutical characteristics in combination with key soil properties, such as cation exchange capacity, increase model complexity but yield an improvement in the predictive capability of soil sorption models. Nevertheless, as the models included in this analysis were only able to predict a maximum of 71% and 67% of the sorption coefficients for the compounds to within one log unit of the corresponding measured value in soils and sludge, respectively, there is a need for new models to be developed to better predict the sorption of ionisable pharmaceuticals in soil and sludge systems. The variation in sorption coefficients, even for a single pharmaceutical across different solid types, makes this an inherently difficult task, and therefore requires a broad understanding of both chemical and sorbent properties driving the sorption process.
RESUMO
Organic contaminants such as pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) are known to persist in the aquatic environment and many are indicated as endocrine, epigenetic, or other toxicants. Typically, the study of PPCPs/ECs in the aquatic environment is limited to their occurrence dissolved in river water. In this study, accumulation and spatial distribution of thirteen PPCPs/ECs were assessed in aquatic sediment (n = 23), periphyton (biofilm, n = 8), plants Callitriche sp. (n = 8) and Potamogeton sp. (n = 7) as well as amphipod crustaceans (Gammarus pulex, n = 10) and aquatic snails (Bithynia tentaculata, n = 9). All samples (n = 65) were collected from the Hogsmill, Blackwater and Bourne Rivers in southern England. Targeted PPCPs/ECs included pharmaceuticals, plasticisers, perfluorinated compounds, illicit drugs and metabolites. Extraction from solid matrices occurred using ultrasonic-assisted extraction followed by an in-house validated method for solid-phase extraction and subsequent liquid-chromatography tandem mass-spectrometry. Field-derived bioconcentration-factors and biota-sediment accumulation-factors were determined for all studied biota. Residues of studied contaminants were found in all sediment and biota. Concentrations of contaminants were generally higher in biota than sediment. Evidence suggests that the studied aquatic plants may effectively degrade bisphenol-A into its main transformation product hydroxyacetophenone, potentially mediated by cytochrome p450 and internalisation of contaminants into the cellular vacuole. A positive association between both hydrophobicity and PFC chain length and contaminant accumulation was observed in this work. Only PFCs, plasticisers and HAP were classified as either 'bioaccumulative' or 'very bioaccumulative' using BCF criteria established by guidelines of four governments. Contaminants appeared to be differentially bioaccumulative in biota, indicating there may be a need for a species-specific BCF/BSAF classification system. These data form a detailed accounting of PPCP/EC fate and distribution in the aquatic environment highlighting accumulation at lower trophic levels, a potential source for higher organisms.
Assuntos
Sedimentos Geológicos/análise , Drogas Ilícitas/análise , Preparações Farmacêuticas/análise , Plantas/efeitos dos fármacos , Plastificantes/análise , Potamogetonaceae/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/química , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/metabolismo , Inglaterra , Monitoramento Ambiental/métodos , Água Doce/análise , Drogas Ilícitas/isolamento & purificação , Drogas Ilícitas/metabolismo , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/metabolismo , Plantas/química , Plantas/metabolismo , Plastificantes/isolamento & purificação , Plastificantes/metabolismo , Potamogetonaceae/química , Potamogetonaceae/metabolismo , Extração em Fase Sólida , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/metabolismoRESUMO
The spatial distribution of pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) such as plasticisers, perflourinated compounds (PFCs) and illicit drug metabolites in water and bound to suspended particulate material (SPM) is not well-understood. Here, we quantify levels of thirteen selected contaminants in water (n=88) and their partition to suspended particulate material (SPM, n=16) in three previously-unstudied rivers of Greater London and Southern England during a key reproduction/spawning period. Analysis was conducted using an in-house validated method for Solid Phase Extraction followed by High-Performance Liquid Chromatography-Tandem Mass-Spectrometry. Analytes were extracted from SPM using an optimised method for ultrasonic-assisted solvent extraction. Detection frequencies of contaminants dissolved in water ranged from 3% (ethinylestradiol) to 100% (bisphenol-A). Overall mean concentrations in the aqueous-phase ranged from 14.7ng/L (benzoylecgonine) to 159ng/L (bisphenol-A). Sewage treatment works (STW) effluent was the predominant source of pharmaceuticals, while plasticisers/perfluorinated compounds may additionally enter rivers via other sources. In SPM, detection frequencies ranged from 44% (PFOA) to 94% (hydroxyacetophenone). Mean quantifiable levels of analytes bound to SPM ranged from 13.5ng/g dry SPM (0.33ng bound/L water) perfluorononanoic acid to 2830ng/g dry SPM (14.3ng bound/L water) perfluorooctanesulfonic acid. Long chain (>C7) amphipathic and acidic PFCs were found to more preferentially bind to SPM than short chain PFCs and other contaminants (Kd=34.1-75.5 vs <5 respectively). Per capita daily contributions of studied contaminants entering rivers ranged from 0.157µg/person/day of benzoylecgonine (cocaine metabolite) to 58.6µg/person/day of bisphenol-A. The large sample size of this work (n=104) enabled ANOVA followed by Tukey HSD post-hoc tests to establish significant trends in PPCP/EC spatial distribution from headwaters through downstream stretches of studied rivers. Novel findings include environmental Kd calculations, the occurrence of contaminants in river headwaters, increases in contaminant metabolite concentrations downstream of STW effluents revealing possible in-river degradation or de-conjugation, the influence of polarity and acidity in the partition of contaminants to particulate-material, among others.
RESUMO
An effective, specific and accurate method is presented for the quantification of 13 markers of anthropogenic contaminants in water using solid phase extraction (SPE) followed by high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Validation was conducted according to the International Conference on Harmonisation (ICH) guidelines. Method recoveries ranged from 77 to 114% and limits of quantification between 0.75 and 4.91 ng/L. A study was undertaken to quantify the concentrations and loadings of the selected contaminants in 6 sewage treatment works (STW) effluent discharges as well as concentrations in 5 rain-driven street runoffs and field drainages. Detection frequencies in STW effluent ranged from 25% (ethinylestradiol) to 100% (benzoylecgonine, bisphenol-A (BPA), bisphenol-S (BPS) and diclofenac). Average concentrations of detected compounds in STW effluents ranged from 3.62 ng/L (ethinylestradiol) to 210 ng/L (BPA). Levels of perfluorinated compounds (PFCs) perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) as well as the plasticiser BPA were found in street runoff at maximum levels of 1160 ng/L, 647 ng/L and 2405 ng/L respectively (8.52, 3.09 and 2.7 times more concentrated than maximum levels in STW effluents respectively). Rain-driven street runoff may have an effect on levels of PFCs and plasticisers in receiving rivers and should be further investigated. Together, this method with the 13 selected contaminants enables the quantification of various markers of anthropogenic pollutants: inter alia pharmaceuticals, illicit drugs and their metabolites from humans and improper disposal of drugs, while the plasticisers and perfluorinated compounds may also indicate contamination from industrial and transport activity (street runoff).