Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Andrology ; 11(5): 891-903, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36895139

RESUMO

BACKGROUND: The germline perpetuates genetic information across generations. To maintain the integrity of the germline, transposable elements in the genome must be silenced, as these mobile elements would otherwise engender widespread mutations passed on to subsequent generations. There are several well-established mechanisms that are dedicated to providing defense against transposable elements, including DNA methylation, RNA interference, and the PIWI-interacting RNA pathway. OBJECTIVES: Recently, several studies have provided evidence that transposon defense is not only provided by factors dedicated to this purpose but also factors with other roles, including in germline development. Many of these are transcription factors. Our objective is to summarize what is known about these "bi-functional" transcriptional regulators. MATERIALS AND METHODS: Literature search. RESULTS AND CONCLUSION: We summarize the evidence that six transcriptional regulators-GLIS3, MYBL1, RB1, RHOX10, SETDB1, and ZBTB16-are both developmental regulators and transposable element-defense factors. These factors act at different stages of germ cell development, including in pro-spermatogonia, spermatogonial stem cells, and spermatocytes. Collectively, the data suggest a model in which specific key transcriptional regulators have acquired multiple functions over evolutionary time to influence developmental decisions and safeguard transgenerational genetic information. It remains to be determined whether their developmental roles were primordial and their transposon defense roles were co-opted, or vice versa.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Humanos , Elementos de DNA Transponíveis/genética , Espermatogônias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Espermatócitos , RNA Interferente Pequeno/genética , Células Germinativas/metabolismo
2.
PLoS One ; 18(3): e0282822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893203

RESUMO

A common cause of frontotemporal dementia (FTD) are nonsense mutations in the progranulin (GRN) gene. Because nonsense mutations activate the nonsense-mediated RNA decay (NMD) pathway, we sought to inhibit this RNA turnover pathway as a means to increase progranulin levels. Using a knock-in mouse model harboring a common patient mutation, we tested whether either pharmacological or genetic inhibition of NMD upregulates progranulin in these GrnR493X mice. We first examined antisense oligonucleotides (ASOs) targeting an exonic region in GrnR493X mRNA predicted to block its degradation by NMD. As we previously reported, these ASOs effectively increased GrnR493X mRNA levels in fibroblasts in vitro. However, following CNS delivery, we found that none of the 8 ASOs we tested increased Grn mRNA levels in the brains of GrnR493X mice. This result was obtained despite broad ASO distribution in the brain. An ASO targeting a different mRNA was effective when administered in parallel to wild-type mice. As an independent approach to inhibit NMD, we examined the effect of loss of an NMD factor not required for embryonic viability: UPF3b. We found that while Upf3b deletion effectively perturbed NMD, it did not increase Grn mRNA levels in Grn+/R493X mouse brains. Together, our results suggest that the NMD-inhibition approaches that we used are likely not viable for increasing progranulin levels in individuals with FTD caused by nonsense GRN mutations. Thus, alternative approaches should be pursued.


Assuntos
Demência Frontotemporal , Camundongos , Animais , Progranulinas/genética , Demência Frontotemporal/genética , RNA , Códon sem Sentido , RNA Mensageiro/genética , Degradação do RNAm Mediada por Códon sem Sentido , Modelos Animais de Doenças , Proteínas de Ligação a RNA/genética
3.
Nucleic Acids Res ; 50(20): 11470-11491, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259644

RESUMO

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.


Assuntos
Endorribonucleases , Grânulos de Ribonucleoproteínas de Células Germinativas , Espermatogênese , Transcriptoma , Animais , Masculino , Camundongos , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , Espermátides/metabolismo , Espermatogênese/genética , Endorribonucleases/metabolismo
4.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255229

RESUMO

Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA , Camundongos , Animais , RNA/metabolismo , Filogenia , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camadas Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Nucleic Acids Res ; 50(13): 7310-7325, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35776114

RESUMO

The nuanced mechanisms driving primordial germ cells (PGC) specification remain incompletely understood since genome-wide transcriptional regulation in developing PGCs has previously only been defined indirectly. Here, using SLAMseq analysis, we determined genome-wide transcription rates during the differentiation of embryonic stem cells (ESCs) to form epiblast-like (EpiLC) cells and ultimately PGC-like cells (PGCLCs). This revealed thousands of genes undergoing bursts of transcriptional induction and rapid shut-off not detectable by RNAseq analysis. Our SLAMseq datasets also allowed us to infer RNA turnover rates, which revealed thousands of mRNAs stabilized and destabilized during PGCLC specification. mRNAs tend to be unstable in ESCs and then are progressively stabilized as they differentiate. For some classes of genes, mRNA turnover regulation collaborates with transcriptional regulation, but these processes oppose each other in a surprisingly high frequency of genes. To test whether regulated mRNA turnover has a physiological role in PGC development, we examined three genes that we found were regulated by RNA turnover: Sox2, Klf2 and Ccne1. Circumvention of their regulated RNA turnover severely impaired the ESC-to-EpiLC and EpiLC-to-PGCLC transitions. Our study demonstrates the functional importance of regulated RNA stability in germline development and provides a roadmap of transcriptional and post-transcriptional regulation during germline specification.


Assuntos
Células Germinativas , RNA , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Células Germinativas/citologia , Camadas Germinativas , Camundongos , Estabilidade de RNA , RNA Mensageiro/genética , Transcrição Gênica
6.
Cell Genom ; 2(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35720252

RESUMO

Mouse substrains are an invaluable model for understanding disease. We compared C57BL/6J, which is the most commonly used inbred mouse strain, with eight C57BL/6 and five C57BL/10 closely related inbred substrains. Whole-genome sequencing and RNA-sequencing analysis yielded 352,631 SNPs, 109,096 indels, 150,344 short tandem repeats (STRs), 3,425 structural variants (SVs), and 2,826 differentially expressed genes (DE genes) among these 14 strains; 312,981 SNPs (89%) distinguished the B6 and B10 lineages. These SNPs were clustered into 28 short segments that are likely due to introgressed haplotypes rather than new mutations. Outside of these introgressed regions, we identified 53 SVs, protein-truncating SNPs, and frameshifting indels that were associated with DE genes. Our results can be used for both forward and reverse genetic approaches and illustrate how introgression and mutational processes give rise to differences among these widely used inbred substrains.

7.
Nat Rev Cancer ; 22(8): 437-451, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35624152

RESUMO

Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.


Assuntos
Neoplasias , RNA , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Degradação do RNAm Mediada por Códon sem Sentido , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902009

RESUMO

Concordant transcriptional regulation can generate multiple gene products that collaborate to achieve a common goal. Here we report a case of concordant transcriptional regulation that instead drives a single protein to be produced in the same cell type from divergent promoters. This gene product-the RHOX5 homeobox transcription factor-is translated from 2 different mRNAs with different 5' untranslated regions (UTRs) transcribed from alternative promoters. Despite the fact that these 2 promoters-the proximal promoter (Pp) and the distal promoter (Pd)-exhibit different patterns of tissue-specific activity, share no obvious sequence identity, and depend on distinct transcription factors for expression, they exhibit a remarkably similar expression pattern in the testes. In particular, both depend on androgen signaling for expression in the testes, where they are specifically expressed in Sertoli cells and have a similar stage-specific expression pattern during the seminiferous epithelial cycle. We report evidence for 3 mechanisms that collaborate to drive concordant Pp/Pd expression. First, both promoters have an intrinsic ability to respond to androgen receptor and androgen. Second, the Pp acts as an enhancer to promote androgen-dependent transcription from the Pd. Third, Pd transcription is positively autoregulated by the RHOX5 protein, which is first produced developmentally from the Pp. Together, our data support a model in which the Rhox5 homeobox gene evolved multiple mechanisms to activate both of its promoters in Sertoli cells to produce Rhox5 in an androgen-dependent manner during different phases of spermatogenesis.


Assuntos
Androgênios/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Regiões Promotoras Genéticas , Células de Sertoli/metabolismo , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Animais , Metilação de DNA , Genes Homeobox , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/metabolismo , Isoformas de Proteínas , Receptores Androgênicos/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogênese , Testículo/metabolismo , Fatores de Transcrição/metabolismo
9.
Cell Rep ; 36(3): 109423, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289349

RESUMO

Spermatogonial stem cells (SSCs) are essential for male fertility. Here, we report that mouse SSC generation is driven by a transcription factor (TF) cascade controlled by the homeobox protein, RHOX10, which acts by driving the differentiation of SSC precursors called pro-spermatogonia (ProSG). We identify genes regulated by RHOX10 in ProSG in vivo and define direct RHOX10-target genes using several approaches, including a rapid temporal induction assay: iSLAMseq. Together, these approaches identify temporal waves of RHOX10 direct targets, as well as RHOX10 secondary-target genes. Many of the RHOX10-regulated genes encode proteins with known roles in SSCs. Using an in vitro ProSG differentiation assay, we find that RHOX10 promotes mouse ProSG differentiation through a conserved transcriptional cascade involving the key germ-cell TFs DMRT1 and ZBTB16. Our study gives important insights into germ cell development and provides a blueprint for how to define TF cascades.


Assuntos
Proteínas de Homeodomínio/metabolismo , Transdução de Sinais , Espermatogônias/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Células Germinativas/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083437

RESUMO

Transposable elements (TEs) are mobile sequences that engender widespread mutations and thus are a major hazard that must be silenced. The most abundant active class of TEs in mammalian genomes is long interspersed element class 1 (LINE1). Here, we report that LINE1 transposition is suppressed in the male germline by transcription factors encoded by a rapidly evolving X-linked homeobox gene cluster. LINE1 transposition is repressed by many members of this RHOX transcription factor family, including those with different patterns of expression during spermatogenesis. One family member-RHOX10-suppresses LINE1 transposition during fetal development in vivo when the germline would otherwise be susceptible to LINE1 activation because of epigenetic reprogramming. We provide evidence that RHOX10 suppresses LINE transposition by inducing Piwil2, which encodes a key component in the Piwi-interacting RNA pathway that protects against TEs. The ability of RHOX transcription factors to suppress LINE1 is conserved in humans but is lost in RHOXF2 mutants from several infertile human patients, raising the possibility that loss of RHOXF2 causes human infertility by allowing uncontrolled LINE1 expression in the germline. Together, our results support a model in which the Rhox gene cluster is in an evolutionary arms race with TEs, resulting in expansion of the Rhox gene cluster to suppress TEs in different biological contexts.


Assuntos
Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Família Multigênica , Animais , Regulação da Expressão Gênica , Genes Ligados ao Cromossomo X , Células HEK293 , Proteínas de Homeodomínio , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese/genética , Fatores de Transcrição/metabolismo
11.
Curr Opin Cell Biol ; 67: 71-78, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950921

RESUMO

Spermatogonial stem cells (SSCs) are essential for long-term spermatogenesis and are the subject of considerable clinical interest, as 'SSC therapy' has the potential to cure some forms of male infertility. Recently, we have learned more about SSCs and spermatogenesis in general from a plethora of studies that performed single-cell RNA sequencing (scRNAseq) analysis on dissociated cells from human, macaque, and/or mice testes. Here, we discuss what scRNAseq analysis has revealed about SSC precursor cells, the initial generation of SSCs during perinatal development, and their heterogeneity once established. scRNAseq studies have also uncovered unexpected heterogeneity of the larger class of cells that includes SSCs - undifferentiated spermatogonia. This raises the controversial possibility that multiple SSC subsets exist, which has implications for mechanisms underlying spermatogenesis and future SSC therapeutic approaches.


Assuntos
Espermatogônias/citologia , Células-Tronco/citologia , Animais , Humanos , Masculino , Modelos Biológicos , Análise de Célula Única , Espermatogênese , Testículo/citologia
12.
Elife ; 92020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32773035

RESUMO

The UPF3B-dependent branch of the nonsense-mediated RNA decay (NMD) pathway is critical for human cognition. Here, we examined the role of UPF3B in the olfactory system. Single-cell RNA-sequencing (scRNA-seq) analysis demonstrated considerable heterogeneity of olfactory sensory neuron (OSN) cell populations in wild-type (WT) mice, and revealed that UPF3B loss influences specific subsets of these cell populations. UPF3B also regulates the expression of a large cadre of antimicrobial genes in OSNs, and promotes the selection of specific olfactory receptor (Olfr) genes for expression in mature OSNs (mOSNs). RNA-seq and Ribotag analyses identified classes of mRNAs expressed and translated at different levels in WT and Upf3b-null mOSNs. Integrating multiple computational approaches, UPF3B-dependent NMD target transcripts that are candidates to mediate the functions of NMD in mOSNs were identified in vivo. Together, our data provides a valuable resource for the olfactory field and insights into the roles of NMD in vivo.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA-Seq , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Análise de Célula Única
13.
Proc Natl Acad Sci U S A ; 117(30): 17832-17841, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661178

RESUMO

Spermatogonial stem cells (SSCs) are essential for the generation of sperm and have potential therapeutic value for treating male infertility, which afflicts >100 million men world-wide. While much has been learned about rodent SSCs, human SSCs remain poorly understood. Here, we molecularly characterize human SSCs and define conditions favoring their culture. To achieve this, we first identified a cell-surface protein, PLPPR3, that allowed purification of human primitive undifferentiated spermatogonia (uSPG) highly enriched for SSCs. Comparative RNA-sequencing analysis of these enriched SSCs with differentiating SPG (KIT+ cells) revealed the full complement of genes that shift expression during this developmental transition, including genes encoding key components in the TGF-ß, GDNF, AKT, and JAK-STAT signaling pathways. We examined the effect of manipulating these signaling pathways on cultured human SPG using both conventional approaches and single-cell RNA-sequencing analysis. This revealed that GDNF and BMP8B broadly support human SPG culture, while activin A selectively supports more advanced human SPG. One condition-AKT pathway inhibition-had the unique ability to selectively support the culture of primitive human uSPG. This raises the possibility that supplementation with an AKT inhibitor could be used to culture human SSCs in vitro for therapeutic applications.


Assuntos
Transdução de Sinais , Espermatogônias/citologia , Espermatogônias/metabolismo , Transcriptoma , Biomarcadores , Separação Celular , Células Cultivadas , Biologia Computacional , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imunofenotipagem , Masculino , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
14.
Hum Mol Genet ; 29(15): 2568-2578, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32667670

RESUMO

Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.


Assuntos
Códon sem Sentido/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Distúrbios da Fala/genética , Linhagem Celular , Pré-Escolar , Redes Reguladoras de Genes/genética , Humanos , Lactente , Mutação com Perda de Função/genética , Masculino , Transtornos do Neurodesenvolvimento/patologia , Degradação do RNAm Mediada por Códon sem Sentido/genética , Splicing de RNA/genética , Mutação Silenciosa/genética , Distúrbios da Fala/patologia
15.
Development ; 147(3)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31964773

RESUMO

Pro-spermatogonia (SG) serve as the gateway to spermatogenesis. Using single-cell RNA sequencing (RNAseq), we studied the development of ProSG, their SG descendants and testicular somatic cells during the perinatal period in mice. We identified both gene and protein markers for three temporally distinct ProSG cell subsets, including a migratory cell population with a transcriptome distinct from the previously defined T1- and T2-ProSG stages. This intermediate (I)-ProSG subset translocates from the center of seminiferous tubules to the spermatogonial stem cell (SSC) 'niche' in its periphery soon after birth. We identified three undifferentiated SG subsets at postnatal day 7, each of which expresses distinct genes, including transcription factor and signaling genes. Two of these subsets have the characteristics of newly emergent SSCs. We also molecularly defined the development of Sertoli, Leydig and peritubular myoid cells during the perinatal period, allowing us to identify candidate signaling pathways acting between somatic and germ cells in a stage-specific manner during the perinatal period. Our study provides a rich resource for those investigating testicular germ and somatic cell developmental during the perinatal period.


Assuntos
Células Germinativas/crescimento & desenvolvimento , Células Intersticiais do Testículo/metabolismo , RNA-Seq/métodos , Células de Sertoli/metabolismo , Análise de Célula Única/métodos , Espermatogônias/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Via de Sinalização Hippo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Serina-Treonina Quinases/metabolismo , Espermatogênese/genética , Nicho de Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma
17.
Endocrinology ; 160(12): 2946-2958, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599939

RESUMO

Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder characterized by theca cell hyperplasia and excessive androgen production. An increasing body of evidence has pointed to a close association between PCOS and low-grade chronic systemic inflammation. However, the mechanistic basis for this linkage is unknown. Therefore, we evaluated the effects of the inflammatory agents lipopolysaccharide (LPS) and IL-1ß on rat theca-interstitial cells (TICs). We found that incubation with either LPS or IL-1ß elicited a dose-dependent increase in both TIC viability and androgen production. Using RNA sequencing analysis, we found that both of these inflammatory agents also triggered profound and widespread shifts in gene expression. Using a stringent statistical cutoff, LPS and IL-1ß elicited differential expression of 5201 and 5953 genes, respectively. Among the genes upregulated by both LPS and IL-1ß were key regulatory genes involved in the cholesterol and androgen biosynthesis pathways, including Cyp17a1, Cyp11a1, Hsd3b, and Hmgcr. This provides a molecular explanation for the mechanism of action of inflammatory agents leading to increased androgen production. Gene ontology and pathway analysis revealed that both LPS and IL-1ß regulated genes highly enriched for many common functions, including the immune response and apoptosis. However, a large number of genes (n = 2222) were also uniquely regulated by LPS and IL-1ß, indicating that these inflammatory mediators have substantial differences in their mechanism of action. Together, these findings highlight the potential molecular mechanisms through which chronic low-grade inflammation contributes to the pathogenesis of androgen excess in PCOS.


Assuntos
Androgênios/biossíntese , Inflamação/complicações , Síndrome do Ovário Policístico/etiologia , Células Tecais/metabolismo , Animais , Feminino , Expressão Gênica , Interleucina-1beta , Lipopolissacarídeos , Ácido Mevalônico/metabolismo , Síndrome do Ovário Policístico/metabolismo , Ratos Sprague-Dawley
18.
Nature ; 568(7751): 179-180, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30962551
19.
Cell Stem Cell ; 24(2): 201-203, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735645

RESUMO

Spermatogonial stem cells (SSCs) are essential for adult spermatogenesis. Recently, Wang et al. (2018), Guo et al. (2018), and Hermann et al. (2018) used single-cell RNA sequencing to define and molecularly characterize human testicular cell populations, including spermatogonial subsets with characteristics of human SSCs.


Assuntos
Espermatogênese , Espermatogônias , Adulto , Humanos , Masculino , Análise de Sequência de RNA , Células-Tronco , Testículo
20.
Cell Rep ; 26(6): 1501-1517.e4, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726734

RESUMO

Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of neonatal testes reveals several cell subsets, including cell populations with characteristics of primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker genes. We identify protein markers for the most primitive SPG state, allowing us to purify this likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in both neonatal and adult testes and trace their developmental trajectories. Our data provide a blueprint of the developing human male germline and supporting somatic cells. The PGC-like and SSC markers are candidates to be used for SSC therapy to treat infertility.


Assuntos
Análise de Célula Única/métodos , Testículo/citologia , Adulto , Diferenciação Celular , Células Cultivadas , Humanos , Recém-Nascido , Masculino , Espermatogônias/citologia , Espermatogônias/metabolismo , Testículo/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA