Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39133085

RESUMO

The LLAMA (Lyman Alpha Measurement Apparatus) pinhole camera diagnostic had previously been deployed on DIII-D to measure radial profiles of the Lyman-α (Ly-α) deuterium neutral line brightness across the plasma boundary in the lower chamber to infer neutral deuterium density and ionization rate profiles. This system has recently been upgraded with a new diagnostic head, named ALPACA, that also encloses two pinhole cameras and duplicates the LLAMA views in the upper chamber. Similar to LLAMA, ALPACA provides two times 20 lines of sight, viewing the plasma edge on the inboard and outboard sides with a radial resolution of ∼2.5 cm (FWHM) and an effective time resolution of ∼1 ms that allows for the investigation of inter-ELM dynamics. The extended Ly-α system provides better coverage to study neutrals in experiments with various plasma shapes utilizing both the upper and lower divertors. Furthermore, post-campaign calibration of the LLAMA diagnostic has successfully been demonstrated for the first time. This was facilitated by various upgrades to the calibration set-up and detailed measurements of the emissivity distribution of the Ly-α calibration source using a pinhole collimator. It was found that the sensitivity of the inboard LLAMA pinhole camera was reduced by a factor of 2.0 ± 0.2 over the course of six months of plasma operation in 2021. The upgraded Ly-α system, equipped with improved absolute calibration, will provide key input for neutral fueling and pedestal particle transport studies and for 2D edge transport code validation on the DIII-D tokamak.

2.
Rev Sci Instrum ; 93(10): 103503, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319373

RESUMO

Electromagnetic pickup noise in the tokamak environment imposes an imminent challenge for measuring weak diagnostic photocurrents in the nA range. The diagnostic signal can be contaminated by an unknown mixture of crosstalk signals from coils powered by currents in the kA range. To address this issue, an algorithm for robust identification of linear multi-input single-output (MISO) systems has been developed. The MISO model describes the dynamic relationship between measured signals from power sources and observed signals in the diagnostic and allows for a precise subtraction of the noise component. The proposed method was tested on experimental diagnostic data from the DIII-D tokamak, and it has reduced noise by up to 20 dB in the 1-20 kHz range.

3.
Rev Sci Instrum ; 92(3): 033523, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820041

RESUMO

A one dimensional, absolutely calibrated pinhole camera system was installed on the DIII-D tokamak to measure edge Lyman-alpha (Ly-α) emission from hydrogen isotopes, which can be used to infer neutral density and ionization rate profiles. The system is composed of two cameras, each providing a toroidal fan of 20 lines of sight, viewing the plasma edge on the inboard and outboard side of DIII-D. The cameras' views lie in a horizontal plane 77 cm below the midplane. At its tangency radius, each channel provides a radial resolution of ∼2 cm full width at half maximum (FWHM) with a total coverage of 22 cm. Each camera consists of a rectangular pinhole, Ly-α reflective mirror, narrow-band Ly-α transmission filter, and a 20 channel AXUV photodetector. The combined mirror and transmission filter have a FWHM of 5 nm, centered near the Ly-α wavelength of 121.6 nm and is capable of rejecting significant, parasitic carbon-III (C-III) emission from intrinsic plasma impurities. To provide a high spatial resolution measurement in a compact footprint, the camera utilizes advanced engineering and manufacturing techniques including 3D printing, high stability mirror mounts, and a novel alignment procedure. Absolutely calibrated, spatially resolved Ly-α brightness measurements utilize a bright, isolated line with low parasitic surface reflections and enable quantitative comparison to modeling to study divertor neutral leakage, main chamber fueling, and radial particle transport.

4.
Rev Sci Instrum ; 92(3): 033522, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820112

RESUMO

The LLAMA (Lyman-Alpha Measurement Apparatus) diagnostic was recently installed on the DIII-D tokamak [Rosenthal et al., Rev. Sci. Instrum. (submitted) (2020)]. LLAMA is a pinhole camera system with a narrow band Bragg mirror, a bandpass interference filter, and an absolute extreme ultraviolet photodiode detector array, which measures the Ly-α brightness in the toroidal direction on the inboard, high field side (HFS) and outboard, low field side (LFS). This contribution presents a setup and a procedure for an absolute calibration near the Ly-α line at 121.6 nm. The LLAMA in-vacuum components are designed as a compact, transferable setup that can be mounted in an ex situ vacuum enclosure that is equipped with an absolutely calibrated Ly-α source. The spectral purity and stability of the Ly-α source are characterized using a vacuum ultraviolet spectrometer, while the Ly-α source brightness is measured by a NIST-calibrated photodiode. The non-uniform nature of the Ly-α source emission was overcome by performing a calibration procedure that scans the Ly-α source position and employs a numerical optimization to determine the emission pattern. Nominal and measured calibration factors are determined and compared, showing agreement within their uncertainties. A first conversion of the measured signal obtained from DIII-D indicates that the Ly-α brightness on the HFS and LFS is on the order of 1020 Ph sr-1 m-2 s-1. The established calibration setup and procedure will be regularly used to re-calibrate the LLAMA during DIII-D vents to monitor possible degradation of optical components and detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA