Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 463: 132839, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926015

RESUMO

Shale gas hydraulic fracturing generates flowback waters that pose a threat to aquatic organisms if released into the environment. In order to prevent adverse effects on aquatic ecosystems, multiple lines of evidence are needed to guide better decisions and management actions. This study employed a multi-disciplinary approach, combining direct toxicity assessment (DTA) on the water flea Daphnia carinata and LC-MS metabolomics analysis to determine the impact of a major ion salinity control (SC) and a cumulative flowback shale gas wastewater (SGW) from a well in the Beetaloo Sub-basin, Northern Territory, Australia. The exposures included a culture water control, simply further referred to as 'control', SC at 1% and 2% (v/v) and SGW at 0.125, 0.25, 0.5, 1% and 2% (v/v). The results showed that reproduction was significantly increased at SGW 0.5%, and significantly decreased when exposed to SC 2%. SGW 2% was found to be acutely toxic for the D. carinata (< 48-h). Second generation (F1) of D. carinata exposed to 0.125-1% SGW generally saw reduced activity in four oxidative biomarkers: glutathione S-transferase, lipid peroxidation, reactive oxygen species, and superoxide dismutase. At the metabolomics level, we observed significant changes in 103 metabolites in Daphnia exposed to both SGW and elevated salinity, in comparison to the control group. These changes indicate a range of metabolic disturbances induced by SGW and salinity, such as lipid metabolism, amino acid metabolism, nucleotide synthesis, energy production, and the biosynthesis of crucial molecules like hormones and pigments. These multiple lines of evidence approach not only highlights the complexities of SGW's impact on aquatic ecosystems but also underscores the importance of informed decision-making and management practices to safeguard the environment and its inhabitants.


Assuntos
Cladocera , Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Gás Natural/análise , Daphnia , Águas Residuárias/toxicidade , Ecossistema , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 42(2): 481-494, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511521

RESUMO

The 96-h acute toxicity of barium (Ba2+ ), o-cresol, and sodium chloride (NaCl) to Paratya australiensis was assessed in single, binary, and ternary combinations in addition to three biochemical assays: glutathione S-transferase, acetylcholinesterase, and sodium-potassium adenosine triphosphatase. The 96-h lethal concentrations that expressed 50% mortality (LC50) in the single-toxicant exposures were Ba2+ = 23.4 mg/L, o-cresol = 12.2 mg/L, and NaCl = 4198 mg/L. Mortality from o-cresol exposure occurred between 11 and 22 mg/L, whereas Ba2+ was more gradual across 10-105 mg/L, and most of the NaCl mortality occurred between 2050 and 4100 mg/L. Toxic units were used to assess the binary and ternary interactions of the toxicants. A more than additive effect was observed for most combinations in the binary chemical exposures, with the ternary combinations yielding highly synergistic interactions. Greater synergism was observed with the 96-h LC50 of o-cresol in combination with the three concentrations of NaCl (1025, 2050, and 3075 mg/L) compared with Ba2+ , with toxic units of 0.38, 0.48, and 0.10 (o-cresol) and 0.71, 0.67, and 0.50 (Ba2+ ). No notable enzyme activity trends were observed in the enzyme biomarker responses from both individual and mixture exposures. Although acute single-species toxicity tests tend to underestimate the effects of Ba2+ , o-cresol, and NaCl on populations, communities, and ecosystems in seminatural (e.g., mesocosms) and natural systems, there are currently no published acute toxicity data available for P. australiensis and the three toxicants used in the present study. The present study shows that chemicals with different toxicity mechanisms can potentially lead to more synergistic responses. Environ Toxicol Chem 2023;42:481-494. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Decápodes , Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Cloreto de Sódio/toxicidade , Bário , Acetilcolinesterase , Ecossistema , Água Doce , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 41(12): 2928-2949, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36193756

RESUMO

Industries such as unconventional natural gas have seen increased global expansion to meet the increasing energy needs of our increasing global population. Unconventional gas uses hydraulic fracturing that produces significant volumes of produced waters, which can be highly saline and pose a toxic threat to freshwater invertebrates if exposure via discharges, spills, leaks, or runoff were to occur. The primary aim of the present review was to determine the sodium (Na+ ) and chloride (Cl- ) content of these waters as an approximate measure of salinity and how these values compare to the NaCl or synthetic marine salt acute toxicity values of freshwater invertebrate taxa. Shale gas produced waters are much more saline with 78 900 ± 10 200 NaCl mg/L and total dissolved solids (TDS) of 83 200 ± 12 200 mg/L compared to coal bed methane (CBM) produced waters with 4300 ± 1100 NaCl mg/L and TDS of 5900 ± 1300 mg/L and pose a far greater toxicity risk from NaCl to freshwater invertebrates. In addition, the toxicity of other major ions (Ca2+ , K+ , Mg2+ , CO 3 2 - , HCO3 - , and SO 4 2 - ) and their influence on the toxicity of Na+ and Cl- were evaluated. Exposure of untreated and undiluted shale gas produced waters to freshwater invertebrates is likely to result in significant or complete mortality. Shale gas produced waters have higher concentrations of various metals compared with CBM produced waters and are more acidic. We recommend future research to increase the reporting and consistency of water quality parameters, metals, and particularly organics of produced waters to provide a better baseline and help in further investigations. Environ Toxicol Chem 2022;41:2928-2949. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Gás Natural , Poluentes Químicos da Água , Animais , Água Doce , Invertebrados , Salinidade , Cloreto de Sódio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Environ Sci Pollut Res Int ; 27(3): 3361-3383, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845271

RESUMO

The Gippsland Lakes estuary, a Ramsar listed wetland, in Victoria, Australia, is an area of potential concern for metal pollution due to influxes of human population and associated anthropogenic activities. A biomonitoring exercise was undertaken where the concentrations of 9 metals (Cr, Fe, Cu, Zn, As, Se, Ag, Cd and Hg) were analysed in the soft tissue of two common sessile invertebrates: the mussel Mytilus edulis and the barnacle Amphibalanus variegatus from 6 locations on two different occasions throughout the Gippsland Lakes estuary. A salinity gradient exists in the Lakes, from seawater at Lakes Entrance in the east, decreasing down to < 10 PSU in the west at Lake Wellington during times of rainfall, which is a major factor governing the growth and distribution of both species. Dissolved metal levels in general were low; however, Cu at most sites exceeded the 90% trigger values, while all Zn concentrations exceeded the lowest 80% trigger values of the ANZECC marine water quality guidelines for environmental health. Elevated levels of Cu and Zn were found particularly in barnacles at some sites with environmental contamination due to leaching from anti fouling paints and sacrificial zinc anodes. Elevated levels of Ag and Cd were found in mussels at the Hollands Landing site, which is immediately adjacent to a boat ramp, and Cd and Ag at this site are suspected to originate from inland anthropogenic sources. Concentrations of As in M. edulis across all 6 sites in both sampling periods had mean wet weight As concentrations exceeding the maximum level stated in the FSANZ guidelines. A. variegatus contained elevated levels of Hg especially at the North Arm site with a maximum of 13.6 µg Hg/g dry wt., while A. variegatus also showed temporal changes in Hg concentrations across sites. The maximum Hg concentration found in Mytilus edulis was 1.49 µg Hg/g dry wt. at the Hollands Landing site. Previous contaminant studies of biota in the Lakes have targeted sampling of singular predatory or migratory species, such as Black Bream (Acanthopagrus butcheri) and the Burrunan dolphin (Tursiops australis). This is the first biomonitoring study conducted on sessile organisms to assess metal contamination in the system.


Assuntos
Monitoramento Biológico , Metais/metabolismo , Mytilus edulis/metabolismo , Thoracica/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental , Estuários , Humanos , Lagos , Vitória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA